3D Visualization for Oil and Gas Evolves

By Michael M. Heck

October 20, 2006

Technical Director, Visualization Sciences Group,
Mercury Computer Systems, Inc.

3D visualization has been the key to increased success and efficiency in many areas of exploration and production (E&P). In this industry visualization plays a critical role in gaining insight from data. But often when we discuss visualization, we are talking only about the actual rendering of images on the screen. In fact, the visualization challenge for E&P is characterized by computationally expensive algorithms, a very large number of diverse data sets, and a need for greater interactivity and collaboration. To meet this challenge, we must make data management, computation and rendering work together smoothly and efficiently. In this way we will continue to deliver on 3D visualization’s promise of enabling better decisions in less time.

In the past, the E&P industry has been characterized by its use of big machines for both computation and rendering. As the economics of the “PC” architecture overtook big machines, it seemed that the capabilities of a single machine would never be sufficient. The industry turned to clusters of PCs as a solution. Clusters have been widely adopted for purely computational tasks, but only to a limited extent for visualization. Clusters have significant value for visualization, but also introduce significant complexity and cost in administration compared to single machines. Today, with advances in data management, computing and rendering, the “single machine” is once again a viable platform for visualization of E&P data.

Data management

Multi-resolution bricked volume data.Seismic volumes are typically tens of gigabytes today, and hundreds of gigabytes are not uncommon. Sixty-four-bit operating systems have enabled much larger system memory, but both system memory and texture memory, on the graphics processing unit, remain scarce resources compared to the size of the data sets. An effective solution using hierarchical multi-resolution bricking is now available in visualization toolkits — middleware. In this solution, a pre-processing step subdivides the volume data into “bricks” and computes multiple resolution levels. The full-resolution data is the lowest level of the hierarchy and each higher-level brick represents multiple bricks at the level below. With data in this form, the middleware can initially load the lower-resolution data then automatically refine the image as higher-resolution data is loaded in the background. This enables interactive navigation of the largest volumes even on relatively low-end machines. The user does not have to wait for all the data to be loaded, only the data actually needed is loaded and multiple users can access the same data simultaneously because they use only their own local system memory to load the data. The multi-resolution bricking technique is already used in many E&P applications. VolumeViz from Mercury Computer Systems is one example of this visualization middleware. This same technique can be extended to other large data sets such as horizon surfaces and reservoir models.

Computing

For many years applications enjoyed an automatic increase in performance as CPU vendors competed to increase the clock speed in each new generation of chips. Physical limitations such as power consumption and heat dissipation have largely ended this era. The CPU vendors are now competing to increase the number of “cores” in each new generation of chips. Dual-core chips are already common, with quad — and higher — core chips coming soon. To take advantage of this new performance curve software developers will need to embrace multi-threading.

At the same time, alternative chip architectures have become available that provide much higher floating-point performance than conventional CPU chips, but require even more unconventional programming models. The GPU chip on every 3D graphics board is programmable and has very high performance for some algorithms. Its biggest advantage is the option of combining computing and rendering on the same processor. The Cell BE processor is a next-generation heterogeneous multi-core chip now available on a PCI-Express accelerator board from Mercury Computer Systems. All of these programming models, whether multi-threading or stream computing, present tremendous challenges for software developers.

Automatic use of multiple threads in VolumeViz enables parallel computation on large volume data.Middleware libraries can solve part of this problem. For example the VolumeViz toolkit automatically creates a separate thread to manage data loading and multiple separate threads to do the actual physical I/O. In addition, VolumeViz enables the application to supply computation modules that are executed in parallel by the data threads. This capability enables the application to take advantage of multiple cores without changing the application code. VolumeViz also provides a framework for managing computing and rendering on the GPU chip. Application-defined GPU programs are downloaded and executed by VolumeViz in cooperation with its predefined GPU programs for rendering effects. Middleware libraries also provide building-block algorithms, such as fast Fourier transform (FFT) and convolution that are already highly optimized for new architectures.

 

Rendering

Rendering of 3D images is naturally a parallel-computing task. And each new generation of GPU chip has more “pipes” (parallel computing units), providing an automatic increase in rendering performance. Powerful GPUs are available even in laptop machines, making state-of-the-art rendering accessible to almost all users. The ability to program the GPU results in higher quality rendering, new rendering techniques, and new opportunities for interaction by combining computing and rendering on the GPU. Middleware libraries, such as VolumeViz, implement many of these techniques and provide a convenient framework for applications to implement their own techniques. Some relatively new rendering techniques include bump mapping, dynamic lighting, arbitrarily shaped probes — mapping seismic data onto arbitrary geometry — and co-blending of multiple data sets. Combining computing and rendering in the GPU enables techniques including volume clipping (e.g., against horizon surfaces), volume masking (using values of one volume to mask another volume), and volume warping (e.g., horizon flattening).

Combining multiple data sets (co-blending) on the GPU.

Summary

3D visualization will continue to be a critical part of addressing today’s challenges in exploration and production. To be effective and successful, 3D visualization must integrate solutions for data management, computing and rendering. Today, visualizing large E&P data sets no longer requires a supercomputer or even a super cluster. Advances in both hardware and software are coming together to enable larger data sets, more automated analysis, and more effective presentation of the data on single workstations. Taking advantage of these advances will be challenging for software developers and will require some re-thinking of application architectures and user interfaces. However innovative “middleware” solutions can solve some of these problems and provide a framework for a complete solution.

—–

Michael M. Heck is technical director of the Visualization Sciences Group (VSG) at Mercury Computer Systems, Inc. where he evangelizes the use of 3D visualization. He works with customers to understand their applications and apply visualization technology to meet current requirements, and guides the development of visualization technology to meet future requirements. Mr. Heck has been involved in implementing, managing, teaching and applying 3D visualization software for 20+ years. During that time he has been a speaker at conferences including SEG and the World Oil Visualization Showcase, has been an invited instructor for the SIGGRAPH conference courses, and he has authored technical articles on visualization for publications including Communications of the ACM and the American Oil & Gas Reporter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This