New HPC Platform Aims For Balance

By Michael Feldman

October 20, 2006

This week, Silicon Valley startup PANTA Systems unveiled its new server platform called PANTAmatrix. It is an x86-based platform that represents one of the new breed of servers that focuses on I/O performance and SMP configurability. It allows users to dynamically allocate I/O and computational resources across the cluster. A single PANTAmatrix system can support up to 9,000 processors as well as petabytes of storage.

The PANTAmatrix platform is based on an 8U chassis containing a mixture of vertical-oriented blades (or modules). Up to four of these 8U enclosures can go into a single rack. The architecture employs an integrated InfiniBand fabric to connect compute nodes with a shared I/O infrastructure. A single chassis can support two InfiniBand switch modules and up to eight AMD Opteron-based compute modules. Two compute modules can be paired together dynamically via a HyperTransport interconnect to support larger SMP nodes. Since an Opteron module may contain either two or four sockets (containing dual-core processors), nodes can configured to be 4-way, 8-way, or 16-way. Each compute module can hold up to 64 GB of memory, so a maximum of 128 GB per SMP node is possible. Interconnect bandwidth is allocated independently of the SMP size, with up to 12 GB/sec of bandwidth provided to a single node.

Alternatively, an Opteron-based compute module can be connected — again via HyperTransport — to an NVIDIA-based visualization module to produce a CPU-GPU node. Each visualization module contains 2 NVIDIA GPUs. Within an enclosure, up to four visualization modules can be accommodated. The inclusion of commodity graphics processing represents one of the first x86 server systems with this capability. The GPU can be used for either traditional visualization functions or application acceleration. More about this later.

PANTA also offers a 3U storage enclosure, providing up to three terabytes of capacity, connected via the InfiniBand fabric. It provides 800 MB/sec of sustained transfer rate per disk array. The high bandwidth is enabled by the PANTA storage agent using RDMA protocols for OS bypass.

Like the founders of Fabric7 and Liquid Computing — companies offering similar types of architectures — the folks at PANTA Systems are attempting to address the unbalanced nature of traditional x86 cluster platforms, where I/O and memory starvation can severely limit performance. This is especially true for data-intensive applications that require large memory footprints such as you would find in real-time analytics, financial services, seismic simulation, data warehousing and a variety of high performance technical computing applications.

The pursuit of this market space places PANTA in the growing legion of x86 server vendors that are challenging the domination of the big Linux machines. The PANTA systems aren't low-end platforms. They start at around $50K. The competition tends to be machines like HP SuperDomes, IBM Power5/Power6 servers, Sun UltraSPARC-based Sun Fire 15K/25K systems, and SGI Altix platforms. But PANTA thinks it can differentiate itself from the other high-end platform OEMs with superior system design.

Tung Nguyen, PANTA Systems founder and CTO, says data starvation is the key bottleneck today. He reminds us that back in the 1990s everyone was riding on the wave of the microprocessor. With the focus on processor performance, people forgot how to build balanced systems. While CPU improvement has been advancing at around 60 percent per year, memory and I/O performance have only improved 5 to 10 percent. Multi-core processors exacerbate the problem even more. So the challenge is how to feed all the compute engines. Nguyen says the solution is to add a lot more data pipes, while providing the ability to slice up computational resources into various sized SMP nodes and be able to allocate the I/O bandwidth independently across those nodes.

“Computer design is essentially about plumbing. I learned that from Seymour Cray in the '80s when I worked for him,” says Nguyen, who worked at Cray from 1980 to 1987. “With six InfiniBand links coming out of one of our [switch modules] we have more plumbing than anybody else in the world. We have 3X the plumbing that you would get from IBM BladeCenter, HP blades, or any of those high-end systems that other people have. The maximum you see is a couple of InfiniBand links. We have six — and believe me, we use all of them.”

According to Nguyen, they've spent a lot of time with high-end HPC commercial customers, such as you would find on Wall Street. The incumbent hardware providers are usually IBM or HP, so PANTA has to prove themselves in that kind of environment. He says they're not trying to compete in a dollar/flop kind of game. Since PANTA uses commodity technology, large vendors like IBM and HP and even smaller companies like Rackable and Linux Networx can buy Opterons cheaper than PANTA can because of volume purchases. They have to use their advantage in I/O performance, configurability and overall system design to compete with the more established players.

“So if we run into a dollar/flop situation, we cannot win,” explains Nguyen.

But actually the game changes somewhat when you're talking about GPUs says Nguyen. Today's high-end GPUs yield about 200 gigaflops of 32-bit floating point computing power. With the recent interest in stream computing for computational acceleration, and companies like PeakStream providing software support for such systems, the calculation is changing. So now PANTA is starting to believe that they can present a compelling dollar/flop story with their GPU modules.

Nguyen says that in the 1980s, Cray changed the face of computing with its early vector architectures. Since then, the industry has been focused on clustering architectures; there have been no real breakthroughs. But Nguyen believes that coupling GPUs with general-purpose processors is going to rearrange the landscape of computing.

“In the last two or three months, there's been a wave of publicity about stream computing — AMD's acquisition of ATI and PeakStream's announcement [of its stream computing platform],” observes Nguyen. “One of the things about us that is not well known about (since we've been in stealth mode for quite awhile) is that we've been shipping systems with integrated GPUs since early 2005.”

The University of North Carolina chose PANTA gear because the high I/O throughput and NVIDIA GPUs met the requirements of their biomedical simulation and analysis applications. Currently PANTA only supports NVIDIA devices, but since AMD is one of PANTA's key partners, they are starting to develop a relationship with ATI. The company appears to be planning for a more comprehensive offering of GPU technology.

“There's an enormous amount of compute power in one of these GPUs,” says Nguyen. “I believe what [NVIDIA and ATI] are doing is very profound. In the near future you will probably be looking at close to a teraflop, in single precision, and maybe 200 to 300 gigaflops in double precision performance.”

“This is just the beginning for us,” concludes Nguyen. “Our next generation will arrive in six or nine months. We will improve the I/O capability and bandwidth of the system by a factor of four. That will enable us to build the kind of system that can harness the sustained computing power that is offered by technologies like GPUs.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This