Collaboration Grids: Virtual Products and Business Benefits

By By Robert Cohen, Contributing Author

October 23, 2006

Collaboration is one issue where end-users have been pushing hard to make progress. Intel, IBM, Nokia and other firms with large numbers of designers want their design groups to use a collaborative environment so designers in different locations can work as a single team. Auto firms and aerospace companies have also been facing the issue of collaboration, largely because they need to reduce the time-to-market for new products (note the disastrous consequences in the Airbus case!).

Recent and forthcoming meetings of European Commission-funded projects (e.g., SIMDAT, VIVACE) and of service-oriented architecture (SOA) product firms (e.g., the MSC Software conferences on virtual product development) indicate that auto and aerospace firms have made real progress. Using commercial SOA products or tools and grids, they have created “virtual cars” and “virtual planes,” 3-D files with data that support collaboration between engineering design groups. The virtual cars test designs and manage the inclusion of crash, computational fluid dynamics (CFD), structural testing, and noise-vibration and harshness modeling in the overall model of a car.

The advantages of using “virtual cars” are several. First, firms can go through many more static and dynamic simulations using well-known tools such as LS Dyna, NASTRAN, etc., for crash and CFD analysis. This provides robust results and shortens time-to-market. Second, testing and design costs are reduced because simulations replace much of the work that used to be done in these groups. This not only reduces costs, but also cuts down what had been a major area in product development. Third, auto firms are looking for more flexibility in design. They need to be able to respond quickly to new regulations, such as German requirements that the front ends of cars create fewer significant injuries to pedestrians. Virtual cars have let manufacturers change a model design quickly. Fourth, virtual cars have let companies such as Audi greatly increase the number of models they offer. They can design different versions that build on the same frame and often retain other parts of an established design, such as the windows, doors or trunk. Audi now markets about 40 models compared to about six a decade ago.

To create virtual cars, auto firms have enlarged their grids to more than 1,000 CPUs. They have employed traditional applications as part of their SOAs, and employ many simulation and CAE applications on SOAs. Having excellent access to needed data, as well as to compute power, is a sine qua non for virtual cars.

At the present time, virtual cars are developed at a single simulation and design facility. Because virtual car files are often at the 10 terabit level, firms have begun to expand the capacities of their campus WANs. In the future, they plan to link distant design centers together. Design engineers at Audi in Ingolstadt, Germany, will work with their counterparts at SEAT in Martorell, Spain, on the same “virtual car.” Engineering groups, such as Berco, that do undercarriage parts subcontracting may also be linked to the Audi network to collaborate in engineering design. This sharing will require high-speed networks with capacities well beyond the 10-20 Mbps now used to communicate with partners. Dark fiber is one way to put these connections in place.

However, not all auto firms have been moving in this direction. Some have had difficulty using virtual cars. In some cases, this is because there is a true divide among big auto firms. Some have focused on lean manufacturing, almost to the exclusion of what might be called “lean” engineering (i.e., flexible and visually beautiful design that also greatly shortens product development time and reduces development costs). In some auto firms that don’t use the tools SOA software firms have chosen to support “virtual cars,” they have found it a very great challenge to use this innovation. It remains to be seen whether they will continue to resist changing their design operations or if “lean manufacturing” [creating the greatest efficiencies in manufacturing] will trump “lean design.” Initial interviews suggest that it might not be possible to compete in global auto markets unless you combine “lean manufacturing” with “lean design” by using virtual cars.

Virtual cars could well be the tool that expands the use of grids. If auto firms can use virtual cars, and aerospace firms begin to rely upon virtual planes, the way they do collaboration could suggest solutions for the EDA firms such as Intel and IBM. It might even provide a vehicle for pharmaceutical firms doing drug design to come up with 3-D models of drugs that can be worked on by groups throughout the world. Thus, virtual cars could push grids to a new frontier, the “collaboration grid.” With collaboration grids, different simulation and design groups could operate as a single team in spite of the fact that they are separated on a corporate campus or by the miles of airspace between facilities.

If such collaboration grids are widely used in the automotive and aerospace industries, they suggest that the traditional model for Grid 2.0 includes conceptual gaps. In Grid 2.0, grids never move beyond the enterprise, but in collaboration grids they include not only widespread parts of the enterprise, but also a large number of suppliers, subcontractors and engineering partners that the final firm (the auto maker) does not own. In addition, collaboration grids indicate that auto firms are far beyond focusing on “virtualization, aggregation and sharing of all compute, storage, network and data resources.” [“Getting Beyond the Compute Grid: The Challenge of 'Grid 2.0'“, GRIDtoday, Sept. 24] Rather, they are using SOAs and grids to transform the way they bring new products to market, shifting from a technology focus to a market or business focus. And this is where SOAs and grids provide real power — enabling some of the fleetest auto firms to leave their competitors in the dust when it comes to profits and creating cars that are extremely responsive to customer needs.

While much of the recent news in SOA and Grid has been about “services as software,” the virtual car shows that grids are contributing to a major shift in the way goods are produced. If collaboration grids are used across a range of industries, they could exemplify the real power of Grid to alter how firms engage in engineering design. Even service firms might benefit from the creation of a new tool that could shorten the time to design and deliver new services.

Virtual products, not the virtualization of resources, could become one way in which grids change the way the world operates.

About Robert Cohen

Robert B. Cohen is the president of Cohen Communications Group in New York, a fellow with the Economic Strategy Institute and an area director for Industrial Applications of the Open Grid Forum. He is the author of several studies on Grid adoption, including “Grid Computing: Projected Impact on North Carolina’s Economy & Broadband Use through 2010,” and “Cluster and Grid Computing in Japan: Today and in 2010.” Dr. Cohen gave the keynote address at the GRIDtoday '04 conference. He can be reached at [email protected].

Cohen also is one of the coordinators of the OGF-ITU Workshop on Next-Generation Networks and Grids, which is taking place today and tomorrow in Geneva, Switzerland. You can find out more about this workshop at www.itu.int/ITU-T/worksem/grid/programme.html.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire