HPC Gets Virtual; AMD Gets Graphic

By Michael Feldman

October 27, 2006

The problem is a well understood one: Microprocessor performance has outstripped data communication performance, which limits performance of data-intensive applications on standard cluster architectures. The temptation is to scale the cluster out even more, but this yields diminishing returns since the imbalance between the CPU and interconnects scales as well. It's like trying to make a car go faster by adding more valves to the engine.

Three OEM start-ups — Fabric7, PANTA System and Liquid Computing — are attacking the problem with scale-out commodity architectures and each has come up with a compelling design. In August, we focused on Fabric7's solution, and last week, PANTA Systems' new offering. In this week's issue, we spotlight Liquid Computing via an interview with the CEO and co-founder, Brian Hurley. Their new product is being announced for general availability next week.

Although the three companies have come up with rather different architectures, they are employing similar approaches. But you wouldn't guess that talking with them. In my conversations with the trio over the past few months, each tried to distance its solution from the other two. And while the three designs are very different, the basic technology is similar.

The common piece in the solution is to use HyperTransport (HT) technology to control allocation of hardware resources (CPUs, I/O, memory, and network communication) at the physical level. Each vendor provides a software interface that enables the user to dynamically create or dissolve HT communication links to various resources. This allows the user to more easily balance data bandwidth requirements with computing resources. With today's HT technology and AMD dual-core processors, an 8-way (core) SMP is possible. In 2007, the next generation of technology will allow for a 32-way SMP configuration, and a year after that, 128-way systems.

The other common architectural element involves just adding more data pipes in the machine, which helps to address the traditional imbalance in computation versus communication.

The capability to create designer SMP nodes from a common pool of highly connected hardware seems pretty novel. But virtualization via hardware is an established concept. Mainframes have been doing hard partitioning for years. But users pay a lot for this flexibility. With the advent of standard HyperTransport technology, this capability is now available to commodity AMD processor-based systems. Offering resource virtualization — and by extension, reliability — with industry standard parts challenges the big UNIX and Linux machines used for data-intensive enterprise computing. At the same time, it provides a more flexible design to fixed-architecture clusters and offers an interesting alternative for high performance technical computing users.

While virtualization is already well-established in the enterprise, its adoption into HPC will require some re-education. The problem here is that the term has become stigmatized to suggest that it comes with a performance penalty — a big no-no in the HPC culture. This is because conventional virtualization solutions in the enterprise involve a software layer that consumes CPU cycles. The HyperTransport-based solution avoids this particular drawback by establishing hardware resources at the physical layer.

Using virtualization and faster interconnects to make a more flexible commodity-based computing system has a lot of appeal. According to Liquid Computing, IDC believes that about half of the potential market for HPC clusters are held back because of some of the issues that an interconnect-centric architecture addresses. Being able to improve manageability by moving away from the departmentalization of clusters across a company towards a more consolidated infrastructure is something many large enterprise HPC users could benefit from. For that half of the cluster market, the classic enterprise RAS (Reliability, Availability and Serviceability) features are highly valued. And the consolidation of resources has the added benefit of reducing energy, cooling and space requirements.

Because of all the advantages of this type of scalable architecture, the market opportunities span technical computing, high performance enterprise computing, IT outsourcing/ASP, and telecom OEMs. The three vendors are feeling their way into these markets. Currently, Fabric7 is concentrating its efforts on the enterprise market, but is keeping an eye on HPC. PANTA Systems seems to be going after both the enterprise and HPC markets from the get-go. Liquid Computing, while initially targeting HPC, appears to want to use that sector as a springboard to a broader IT market.

With the merging of HPC with enterprise computing, it's a confusing time for both vendors and users. Andy Church, VP of Marketing at Liquid Computing, reported that in conversations they've had with IDC's Earl Joseph, the analyst confirmed the notion that there is a gray area between traditional high performance technical computing and enterprise IT outsourcing. This is reflected by the range of users interested in Liquid Computing's offering. The company's early adopters include customers in the enterprise technical computing, ASP, IT outsourcing and telecommunications OEM markets. For vendors like these, it's becoming more difficult to talk about enterprise computing and HPC as separate markets. “Our perspective is that those worlds are merging,” said Church.

—–

AMD + ATI = Fusion

It's AMD's fault. I vowed to stop writing about GPUs for at least a few issues. But with this week's announcement by AMD to build integrated CPU-GPU processors based on x86 cores and ATI GPU technology, I'm forced to add a few more thoughts on the topic.

The news of this hybrid processor initiative came on the same day that the merger of the AMD and ATI was finalized. To me, this is like announcing plans for your first baby during your honeymoon, which suggests that the two companies were devising this idea during their early courtship. By the way, AMD gets to be the groom in this metaphor since it will keep its name. ATI gets subsumed into AMD, website and all.

Without going into much detail in the announcement, AMD declared its plans to create a new class of x86 processor that integrates CPUs and GPUs at the silicon level with a design initiative called “Fusion.” The new processors will target all computing platforms currently supported by AMD, including laptops, desktops, workstations and servers, as well as consumer electronics. According to the company, the first Fusion processors will come to market in late 2008 or early 2009. In that time frame, the use of 45nm process technology will allow enough room on the die for large GPUs and CPUs to co-mingle and do so within a reasonable thermal envelope.

Compared to separate CPU and GPU device configurations, integrating the two types of computing engines into one chip should yield much better performance and performance-per-watt for applications using 3D graphics, digital media processing and high performance computing. Application-wise, that's a pretty big tent. But it gives you a good sense of where AMD thinks IT growth is going to occur.

This presents an interesting challenge for rival Intel. Basically its choices are:

  • Buy NVIDIA for their GPU technology. An increasingly unlikely event, given that neither of the two companies seems interested in such an arrangement.
  • Morph its own graphics division to produce higher-end devices. An expensive proposition, but cheaper than buying NVIDIA.

  • Beef up the native x86 Streaming SIMD Extensions (SSE) capability to compete with GPU capability. Maybe a more likely scenario, but a less flexible approach overall.

  • Ignore the trend and hope GPUs aren't the “next big thing” in general-purpose processing. The riskiest choice of all.

In attempting to side-step Intel, AMD is betting its future on this new vision of CPU-GPU computing. AMD's track record for redefining processor architectures is pretty impressive. When the company took the x86 into the 64-bit space in 2003, Intel was forced to follow. AMD's development and use of the HyperTransport technology and the on-chip memory controller provided a sound basis for multi-core scalabilty, and is expected to be duplicated by Intel with their CSI bus and their processor-based memory controller. Will history repeat itself once again?

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This