IDC’s HPC User Forum Meets In Manchester

By Nicole Hemsoth

November 3, 2006

The 22nd meeting of the IDC HPC User Forum, held in Manchester, UK, last week, brought together more than 80 UK, European and U.S. participants to discuss leading-edge research, market dynamics and vendor strategies. The local host for the meeting was the University of Manchester. Vendor sponsors included Cray, HP, IBM, INTEL, Panasas and Sun Microsystems. HPC User Forum meetings are co-sponsored by HPCwire.

Attendees were welcomed by IDC's Earl Joseph, executive director of the HPC User Forum; Steering Committee Chairman Paul Muzio, who is VP-Government Programs for Network Computing Services, Inc. and Support Infrastructure Director of the Army High Performance Computing Research Center (AHPCRC); and Terry Hewitt, Head of Supercomputing, Visualization and e-Science (SVE) and Director of the International AVS Centre at Manchester Computing. Other participating HPC User Forum Steering Committee members were Paul Buerger, OSC; Steve Finn, BAE Systems; Sharan Kalwani, General Motors; and Jim Kasdorf, PSC.

The two-day meeting began with an optional tour of the University of Manchester, showcasing Manchester's pioneering role in building the first computers.

Addison Snell presented IDC's HPC technical server market update, noting that the market has had aggregate revenue growth of 94 percent since 2002 and grew 24 percent in 2005 alone. Clusters represented close to half the overall $9.2 billion market revenue for 2005. The capability market has declined 13 percent since 2002, while strong growth at the lower end of the market has boosted revenue in the workgroup segment 200 percent, in the departmental segment 155 percent, and in the divisional segment 84 percent since 2002. The overall leaders by revenue share in 2005 were HP and IBM, with Dell third. The largest application/industry segments by revenue in 2005 were university/academic research, followed by bio-sciences. DCC (digital content and distribution) has been growing rapidly, mainly because of the rise of virtual movies and online gaming. This segment now totals nearly half a billion dollars. The economics/financial segment has been around a long time and, at less than 5 percent of the HPC market, is not as large as some HPC vendors imply. About one-third of all HPC users are already looking at accelerator processors, predominantly FPGAs.

Paul Muzio, AHPCRC/NCSI, reviewed the HPC User Forum's role in identifying and helping to address issues of concern to the user community. The User Forum formulates a technical agenda around these concerns, brings in noted speakers, involves vendors, and encourages government agencies and others to pursue the issues. The User Forum has made important contributions regarding issues in benchmarking, ISV software and other areas. The organization's Steering Committee in recent meetings encouraged members to participate directly in standards committees important for the HPC industry.

Terry Hewitt said Manchester, founded in 1851, is the largest civic university in the UK. Among Manchester's contributions to computing are the first stored computer program and the first memory, based on cathode ray tube technology. Manchester also has a strong history in applications, such as medicine and anthropology, and in computing services within and beyond the university, including the UK's national data service and access grid support center. Manchester operates a Cray T3E, SGI Altix and a 2000-processor Dell for particle physics.

Martyn Guest of CCLRC Daresbury Laboratory discussed the UK's £38 million, three-phase (2006-2008), coordinated procurement  of a variety of HPC systems to support 20 universities. Funds for the HPC procurement, part of the £900 million SRIF3 (Science Research Investment Fund) budget for “research capital,” are entirely for equipment and infrastructure, with no funding for staff. Funds will be awarded to universities, which can then decide how much to spend on what (e.g., computers, networking, facilities). Daresbury got involved because the universities have limited expertise in procuring large HPC machines. Daresbury recommended, and helped assemble, a core set of benchmarks that combine synthetics and real applications.

Ben Ralston talked about the Atomic Weapons Establishment's (AWE) recent procurement that resulted in a win for a 40-teraflop Cray XT3 system. AWE's very demanding application helps maintain the UK's deterrent. The new system boosts sustained performance 25x, even though peak performance rose only 14x. The system will have 3,944 nodes of dual-core Opterons at 2.6 GHz. AWE expects to fully commission the system over the next few weeks. The benchmarks represented AWE users' codes (physics, engineering, material science) and results were weighted according to how heavily each codes is used at AWE. The tests were run on up to 4,096 processing elements.

Sharan Kalwani of General Motors, said he's looking at getting a 40-teraflop system soon. GM owns many other firms and needs to act in a global way, not as a collection of “islands.” HPC plays a key role in quality and touches many aspects of GM's business: customer satisfaction, crash safety, NVH and more. Using HPC, GM has reduced its Vehicle Development Process from 80 months in the early 1990s to under 18 months in 2004, with further reductions planned. He estimates HPC has saved GM $1 billion. The company plans to grow to 60 teraflops of capacity plus capability within two years.

According to Martin Walker at Hewlett Packard, processor manufacturers are responding to requirements for more performance, and devices such as Intel's teraflop processor will be very interesting for petascale computing. We have ten years to construct the petaflop ecosystem. Which applications will need this? One potential area is biomedical research. It would take a petaflop system three years to simulate the folding process of a single protein. Using an HP system, EPFL and several Swiss universities are working to develop a vaccine to stimulate the immune system to kill cancer cells, with promising results in human trials.

Intel's Stephen Wheat said hyper-threading will return, but many-core will progress rapidly. Intel has fabricated and tested 80-core already. The key to all this is what's happening with the thermals. Energy-per-instruction has increased. In 2006, the company will have a teraflop on a test chip (80 TF/square foot). Reaching petaflop application performance with 100,000 processors in 2010 is reasonable. Deploying multithreaded cores in Intel's quad cores could accelerate this. Intel is looking at bringing silicon photonics onto the silicon itself. In the power domain, Intel is looking at achieving 25-30 kilowatts per rack.

Jean-Francois Lavignon noted that although Bull is a newcomer in HPC (2001), the company has complex IT infrastructure experience, NovaScale servers, and OS competence with GDOS, AIX and Linux. The Bull system at CAE is Europe's largest and number five in the world, according to the Top500. Bull also provides smaller HPC systems and installed one this summer in Manchester. Academic and industrial customers include Dassault Aviation and multiple automotive firms.

Paul Muzio gave his colleague Andrew Johnson's presentation on dynamic mesh generation for fluid structure interaction applications. Problem statement: Can you design a very small UAV [Unmanned Aerial Vehicle] with flapping wings? AHPCRC developed new methodologies using partitioned global address space models. Muzio showed a video of a hummingbird in a wind tunnel, and a closely correlated 3D simulation of the hummingbird's wing motion using an unstructured tetrahedral mesh. He showed a simulation of a parachute opening, based on the same method. The method needs each processor to be able to reference any arbitrary element. MPI is not a good fit for this method, which requires very low latency. MPI is good for transferring large messages, not many small ones. Muzio reviewed the advantages of PGAS programming models such as CAF and UPC, along with the current issues (not available on many systems).

Sun's Michael Schulman updated the audience on Sun's recent win at TACC for a 400-teraflop Opteron-based system that will become part of the Teragrid, along with wins at TIGR and Paramount Pictures. Sun has expanded its Opteron line with lower entry pricing and remains a finalist for Phase 3 of the DARPA HPCS program.

Steve Finn, BAE Systems and DoD HPCMP User Advocacy Group member, is also on the HPC User Forum Steering Committee. Finn summarized the panel session on processor options from the September HPC User Forum meeting in Denver, starting with Richard Walsh's (AHPCRC/NCSI) canonical program for evaluating the attributes of processor types and instruction sets in relation to application requirements. Using Kiviat charts and these attributes, you can get a signature for each processor type and compare it with the “typical” Top500 list processor. Finn summarized the pluses and minuses of each type of processor offered by HPC vendors and also summarized the Denver talks by NCI's Jack Collins, Utah State University's Thomas Hauser, and NASA Langley's Robert Singleterry.

Terry Hewitt reviewed the latest developments at the University of Manchester, including write-only memory boards being developed through a strategic alliance with multiple vendors. According to Hewitt, these boards “will support every type of memory known to man, with a new transport interface to calm you down.”

Paul Buerger, Ohio Supercomputer Center and an HPC User Forum Steering Committee member, reviewed the Denver session on petascale initiatives:

  • Paul Muzio stressed the need for balanced systems, global addressing and ease-of-programming.
  • David Probst, Concordia University/Montreal, said our programming models are homogeneous but our computer systems are heterogeneous, so we need heavyweight threads and lightweight threads.
  • Doug Kothe said ORNL has identified a long list of science applications that would benefit from petascale performance.
  • Makoto Taiji, RIKEN, discussed the current MDGrape3 system, the 2008 GRAPE-DR project (2 PF), and the 2012 NexGen project (10 PF).
  • Zeng Yu said the current Dawning 5000A system scales to 100 TF peak performance and Dawning plans a petascale computer.
  • John Morrison reviewed LANL's plans to scale the IBM “Roadrunner” to petascale Linpack performance in “a couple of years.”
  • Dolores Shaffer reviewed the DARPA HPCS program.
  • Horst Simon discussed challenges in moving toward the petascale era and NERSC's purchase of a 100-teraflop Cray “Hood” system, with optional upgrades to the petaflop level.
  • Argonne National Laboratory has a 100-teraflop Blue Gene/L and intends to advance to a peak petaflop in a few years.

According to Christine Kitchen, Daresbury's Distributed Computing Group assists the UK's academic community with cluster procurements, providing advice and courses that include assessments of the capabilities of integrators. Integrators play a major role in cluster purchasing within the UK. The role of Tier 1 vendors versus integrators is ambiguous. Daresbury's 17th Machine Evaluation Workshop will be offered December 5-6, 2006.

Cray's Andy Mason said AWE is going through acceptance testing for its Cray XT3 system. CSC Finland recently ordered a next-generation XT3 that will have more than 70 TF peak performance by 2008. NERSC's 102 “Hood” cabinets will finish delivery in first-quarter 2007.

Chris Wheaton described Panasas as the leader in object storage for scalable Linux clusters. The storage market hasn't moved at the same pace as other cluster technologies. Panasas Storage Cluster allows you to treat metadata separately from the data. DOE has a 5-year, $11 million petascale project to find new ways to manage mountains of data coming from future-generation supercomputers.

Steve Noyes explained how the UK Met Office creates a forecast. UK Met spends £40 million every five years for new HPC systems, with the next operational system procurement due in 2009. Noyes discussed findings and expectations for climate change. Climate models have become more complex since the 1970s, with many more dimensions. Carbon, hydrogen and nitrogen cycles are things people are beginning to add in. The resolution of the models is also increasing.
 
Jim Kasdorf gave an update on the Pittsburgh Supercomputing Center. The PSC Biomedical Initiative, funded by NIH since 1987, is now called the National Resource for Biomedical Supercomputing. Its mission remains biomedical research and outreach to the national biomedical community. The FY07 budget request for the NSF Office of Cyberinfrastructure is almost $600 million. NSF plans a petascale computer in 2010. There will be four chunks of $50 million each in funding for this.

Andy Grant said IBM is starting to see accelerators in procurements. IBM is installing a large Opteron cluster with ClearSpeed boards at the University of Bristol. Sites are also showing interest in Microsoft-based clusters. The Blue Gene/L successor will be Blue Gene/P (for petaflop), followed by Blue Gene/Q (10 petaflops). Power6 is due out in about one year.

John Gurd, Manchester, said the number of processors required (generally agreed to exceed 100,000) for petascale computing may require a change in software architecture. Explicit programming has to go at some point. We need to abstract the programs away from the hardware. This means creating languages and tools together. Auto-parallelizers working dynamically could help. Rule-of-thumb: a problem needs at least one order of magnitude more parallel tasks than the number of processors. For example, you need 1 million tasks available to keep 100,000 processors busy.

Manchester's Andrew Jones chaired a panel on whether programming model changes are needed for petaflops computing. Jones noted that scaling to 1,000 processors on homogeneous architectures is difficult today. Petascale and exascale computing will involve many more threads than today, and possibly heterogeneous architectures. We may need a new programming paradigm.

Ben Ralston, AWE, said HPC has to find emerging technologies, such as the lightweight kernel on the XT3, that allow scaling but are not disruptive and don't change the programming paradigm. Reprogramming software typically takes many person-years. Users won't undergo this unless they're certain of the new direction. “I don't think we're ready for a new software paradigm because don't know where the hardware is going yet.”

Paul Muzio, AHPCRC/NCSI, stressed that GM, Dassault and many other major companies are using Fortran. People won't throw out these huge investments. The applications proposed for petascale computing are not the ones companies or the defense establishment will invest in. There are opportunities for languages like Fortran to evolve, such as Co-Array Fortran. Muzio emphasized we have to get back to the scientific/engineering results, not how many petaflops can be bought. The human cost in developing the apps is far greater than the cost of the hardware.

Ian Reid said Fortran is still NAG's core technology. The days of the single-core treadmill are over, and multi-core is here to stay. This creates major software issues that will force us at least to hybrid hardware architectures. We also need to enhance the software stacks, but in a way that excites the HPC community. There must be portability. There is considerable concern about whether the HPCS languages will deliver on their promises.

Stephen Wheat, Intel, stated that it is clearly too late for programming model shifts before petaflop computing comes, because petaflop computing is coming in the next year or so. There may be enough time before volume petaflop systems arrive in 4-5 years. Even so, how do we get this new thinking done in a decade? We must conceive parallelism before we can represent it. We need to rationalize the problem first. To make this easier, we need architectural stability. “I don't think globally addressable memory will take hold in the volume space, although we may do this at the smaller SMP scale.”

Earl Joseph invited the HPC community to attend IDC's annual “Breakfast at Supercomputing” industry update on Wednesday, Nov. 15, during the SC06 conference in Tampa, Florida. For more information and to register, go to http://www.idc.com/getdoc.jsp?containerId=IDC_P14208.

Joseph also invited the HPC community to participate in IDC's upcoming HPC User Forum meetings in India (New Delhi and Bangalore, February 28-March 2, 2007) and Coeur d'Alene, Idaho (April 9-11, 2007).

—–

The HPC User Forum (www.hpcuserforum.com) is directed by a steering committee consisting of users/buyers from government, industry and academia, and is operated for the users by market analyst firm IDC. Paul Muzio, Vice President-Government Programs for Network Computing Services, Inc. and Support Infrastructure Director of the Army High Performance Computing Research Center, is the current chairman of the steering committee.

The HPC User Forum was founded in 1999 to advance the state of high-performance computing through open discussions, information sharing and initiatives involving HPC users in industry, government and academia, along with HPC vendors and other interested parties. The organization has grown to more than 150 members.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This