ECMWF Workshop Explores the State of HPC in Meteorology

By Christopher Lazou

November 10, 2006

Two weeks ago at the ECMWF (European Centre for Medium-Range Weather Forecasts) Workshop in Reading, over 120 meteorology experts, computer practitioners and vendor representatives spent four days exchanging experiences about the latest results in meteorology and the computer infrastructure which goes along with it. This relatively small and friendly workshop provided a forum for the créme-de-la-créme of HPC users. What followed was a tour de force in meteorological and computing techniques by active practitioners striving to maximise the latest HPC technology and to refine their weather and climate forecasting models. They presented today's practical reality with teraflops systems, as well as their aspiration and vision for petaflops computing in the next five to ten years.

The Workshop included some 35 presentations and a discussion panel. Most of these presentations were by experts from major meteorological centres, from the U.S., Canada, Brazil, Europe, Japan, Korea and China. The rest were from HPC vendors — Cray, Fujitsu, IBM, Linux Networx, NEC, SGI and DataDirect Networks. Thursday afternoon was devoted to a brain storming debate, hoping to identify solutions to the many pressing needs of this increasingly important field of science.

With almost every presentation meriting a treatment of its own, the selection of material in this article is biased towards meteorology applications, and although somewhat arbitrary, hopefully captures the essence of what was presented as well as highlights some news items.

In recent years, meteorology evolved from its esoteric weather prediction role to become a high profile e-business with enormous commercial clout. With climate change manifesting itself in extreme weather patterns, be it droughts, rain floods, or, more destructive hurricanes, the economic stakes are high. The field of meteorology can marshal large budgets — $25 billion, 2001-2007 — needed for data collection, assimilation and the purchase of large-scale computer systems for numerical modelling. So naturally computer vendors are keen to participate in the deliberations and offer previews of their future products.

In weather and climate numerical modelling, the debate on price/performance of commodity systems verses special-purpose systems should be irrelevant. When a hurricane is heading for land, capability computing at a level required to deliver advance predictions in time to implement protection procedures is the only measure worth considering. The imperative is for the ocean model to run on a fine mesh, in hundreds of metres say, not in tens of kilometres, and deliver results on time. The work presented by Keiko Takahashi using the Earth Simulator demonstrated the promising insights one can get from using high resolution models. Their work uses a non-hydrostatic coupled atmosphere-ocean simulation code with 100m to 2km resolution to predict local heavy rain days or weeks in advance, and 2km to 10km resolution for global seasonal predictions. The simulations promise to predict reality very accurately and become a toolkit for survival.

The first presentation, “development of the ECMWF forecasting system” was by Adrian Simmons from ECMWF. He started with the famous picture (circa 1911) from the book of Lewis F. Richardson (1922) of a myriad of humans calculating together (as a computer) to perform numerical weather prediction with processes. Richardson's fantasy had to wait until Charney, Fjortoft and Von Neumann used the ENIAC electronic computer in 1950 to take the first step by performing the numerical integration of the barotropic vorticity equation.

ECMWF became operational in 1979 with the mission to provide medium weather forecasting for member states from Europe. The advances in numerical forecasts are umbilically connected with computer developments. Increases in computer power, has enabled increases in vertical and horizontal grid resolution, more sophisticated analysis of observations, more realistic representations of atmospheric physics and land surfaces and the coupling with ocean wave and circulation models. Delivery of forecasts is more timely and comprehensive including probabilistic ones, based on ensemble methods. There are also new monthly and seasonal predictions as well as reanalysis of multi-decadal observations for understanding long-term weather trends.

In 1979 ECMWF operated a 50 megaflop Cray-1. In 1990 it had a 1 gigaflop Cray Y-MP-8. Today it operates an IBM P5-575 with 4480 CPUs delivering 4 teraflops of sustained performance across their codes. In 1979, their forecast used 200km horizontal grid and achieved 70 percent accuracy for a 3-day-in-advance prediction and around 37 percent with a 7-day prediction. In 2006, the 3-day prediction improved to 96 percent and the 7-day prediction improved to 70 percent.

In 1979, 24-hour data assimilation took 20 percent of computer usage and the rest was used for the deterministic forecast. Now 22 percent of computer usage is used for data assimilation, 17 percent for the deterministic forecast, and 61 percent for ensemble probabilistic forecasts. Since 1979 and the introduction of satellite data capture, the cost of data assimilation relative to single forecast increased more than ten-fold.

The numerical weather prediction (NWP) field has benefited from better models, higher resolution, improved representation of physical processes (such as radiation) and more comprehensive dynamical equations, incorporating chemistry and a sea-ice component. It uses improved methods in determining initial conditions for deterministic and ensemble forecasts, increasing the utilization of satellite data, with larger window for data assimilation. It takes a more unified approach to prediction, bringing more, ocean into the earlier part of the forecast range and incorporating extra aspects of air quality into the core forecasting activity.

The technical challenges facing meteorologists are how to effectively utilize the increasing numbers of computer cores. Larger problem sizes help, but the number of model points per core decreases as resolution increases for given execution time — a problem also for ensemble forecasts due to memory constraints. The core speed and memory gap increases communication and load-imbalance overheads.

Load balancing also becomes more challenging as models include a wider range of processes. Assimilation of observational data poses substantial additional challenges. It involves repeated mapping between observation and model space, iteratively adjusts the model at a lower resolution than primary forecast, and has higher I/O demands.

Other challenges include ensuring continued effectiveness of algorithms that today balance accuracy and efficiency (at the expense of a lower ratio of sustained to peak flops), with the scope for refinements in design and implementation and perhaps for more radical change, but nevertheless are subject to limits imposed by physical laws and the nature of remotely sensed observations.

There is also the desire to ensure continued effectiveness of long-lived codes in which there has been major investment. For example, the joint ECMWF / Météo-France code originated in 1987, has run operationally on Cray C90 vector shared memory, Fujitsu VPP vector distributed memory, IBM scalar SMP cluster and will run operationally on NEC SX8R vector SMP cluster.

Another talk, given by Anthony Hollingsworth from ECMWF, described the Global Earth-system Monitoring using Space and in-situ data (GEMS). This project was started in 2005 and its overall objectives are to: 1) Exploit the huge investments in satellite data; 2) Extend NWP modelling and data assimilation capabilities to atmospheric composition on global and regional scales; and 3) Provide a new range of services for Europe, with global and regional deliverables.

The motivation for GEMS is treaty assessment and validation. Conventions such as Kyoto, Montreal, LRTAP and IPCC need best estimates of sources, sinks and transports of atmospheric constituents. GEMS should also enable the provision of better operational services to the community from improved forecasts. For example, in the 2003 summer heat wave, there were 18 thousand deaths in France and at least 33 thousand in Western Europe. Many would have been avoidable with advance warning.

On the macro level, environmental concerns have triggered $25 billion for new satellite missions in 2001-2008. GEMS plans to synthesise all available satellite and in-situ data into accurate 'status assessments', and will meet many needs of the GCOS implementation plan.

The global GEMS system is organised in six projects. Data input (assimilation and evaluation), greenhouse gases, reactive gases, aerosols (sea salt and desert dust), regional air quality and validation. The aim is to provide initial and boundary conditions for operational regional air-quality and 'chemical weather' forecast systems and provide improved monitoring and forecast services for the health sector on UV exposure and skin cancer, heat stress and drought, acute pollution events, respiratory and cardiovascular disease, and in the future, vector borne and zoonotic disease (e.g. malaria experience). It will also provide regional estimation of sources and sinks of carbon dioxide, ozone, aerosol and so on.

Global forecast of pollutant concentration for the media, the public or city specific, are embodied in the scheme. The production of regional forecasts of chemical species and air quality indices based on an ensemble of air quality models on the European scale are already in their research phase. For example, surface ozone daily maxima are issued from various research sites in France and Germany as illustrated by results from 20th October 2006.

ECMWF plans to have an operational global monitoring forecast system for atmospheric composition, combining all remotely sensed and in-situ data to create three-dimensional global distributions [50km (H), 1km (V), 6-hours] by 2009. The key atmospheric trace constituents of this system are: 1) Greenhouse gases — initially CO2, and progressively adding CH4, N2O, plus SF6 and Radon to check advection accuracy; 2) Reactive gases — initially including O3, NO2, SO2, CO, HCHO, and gradually widening the suite of species; and 3) aerosols — initially a 15-parameter representation, later around 30.

GEMS will provide a retrospective analysis of all accessible in-situ and remotely sensed data on atmospheric dynamics and composition for the ENVISAT-EOS era (1999-2007). It will also provide monthly seasonal maps of the sources, sinks and inter-continental transports, of CO2, O3 and many other trace gases and aerosols, based on in-situ and satellite data.

Bill Kramer from NERSC/LBNL, gave his presentation: “NERSC experience: Implementation of a facility wide global file system”. He briefly touched on favourites such as the widening gap between application performance and peak performance of high-end computing systems; the recent emergence of large, multidisciplinary computational science teams in the DoE research community; the flood of scientific data from both simulations and experiments; and the convergence of computational simulation with experimental data collection and analysis in complex workflows.

He then went on to talk about GUPFS (Global, Unified, Parallel File System). This is a multi-year projec, started four years ago, to deploy a centre-wide shared file system at NERSC. The aim is to make advanced scientific research using NERSC systems more efficient and productive, simplifying end-user data management by providing a shared disk file system in the NERSC production environment. GUPFS is global and unified. The file system is shared by major NERSC systems using consolidated storage and providing a unified name space. It automatically manages the sharing of user files between systems without replication. NERSC has a version of GUPFS in production for over a year and it works. The plan is to integrate it with HPSS and Grid. Their target mission is to have a parallel file system providing performance that is scalable, as the number of clients and storage devices increase.

“We have a path forward that allows all computer architectures to participate fully,” said Kramer. “There is already a huge benefit to a number of users. Two years from now, we expect to report all systems and users are using the global file system, many exclusively”.

In the course of this Workshop, many other presentations dealt with solving substantive problems by coupling weather and ocean models. Community frameworks for building coupled Earth System Models have been an area of intense research and development over the last few years. The GDFL Flexible Modelling System (FMS) has been in active use for about five years. Two broad-based efforts to develop frameworks across the community are now approaching maturity levels that allows for actual deployment: The Earth System Modelling Framework (ESMF) in the U.S. and the European Network for Earth System (ENES) Modelling in Europe.

At the other end of the spectrum, forecasts are used to validate the U.S. inter-organizational modelling initiative known as the Weather Research and Forecast (WRF) model. WRF has a three-pronged objective of developing 1) the next generation meso-scale Numerical Weather Prediction (NWP) modelling system for research and operations; 2) a common modelling infrastructure that facilitates operational NWP collaboration, scientific interoperability, accelerates the transfer of new science from research into operations; and 3) a repeatable process that continuously infuses innovations and capabilities into the community meso-scale NWP modelling system.

As principal partners of this U.S. national effort, the Air Force Weather Agency (AFWA) and Fleet Numerical Meteorology and Oceanography Centre (FNMOC) have been able to leverage a vast array of resources only available to Department of Defense (DoD) entities, in particular, the computational resources (340 teraflops) made available through the DoD's High Performance Computing Modernization Program (HPCMP), whose objective it is to facilitate the rapid application of advance technology into superior war-fighting capabilities. Douglass Post, chief scientist for HPCMP, gave an interesting progress report on the challenges for delivering such complex computational tools for mission-critical activities. This is a core element of the U.S. doctrine for acquiring full-spectrum dominance of military capabilities, enabling it to impose unilateral solutions at will. Douglass' message was that the DoD needs to generate an infrastructure with more engineering and less computer science experimentation if their computer-based experiments are to be taken seriously. They need code architects and rigorous verification and validation schemes, from the start of a project. For DoD applications run in production, teraflops and even petaflops computing power is essential, as timeliness is critical.

The vendors described their latest products and near future research and development activities, moving towards petaflops capability computer systems. Power consumption, reliability of 100,000-plus cores and efficient software infrastructures for ease of use, are major challenges for all vendors straddling the commodity chip roadmap.

To revert to meteorology and slightly change Lewis F Richardson's preface of his 1922 book: “Perhaps … in the near (dim) future it will be possible to advance the computations faster than the weather advances and at a cost less than the saving to mankind due to information gained.”

I wonder which brave meteorologist would visit Richardson's grave in 2011, salute and say: “We played with your fantasy. We imagined a large hall, like a theatre… A myriad [human] computers went to work upon the weather of the part of the map where each one of us sits… Numerous little night signs display the instantaneous values so that neighbouring computers can read them… and after a century, I can report: Mission accomplished, Sir.” The intriguing thought occurred to me: Will Professor Richardson, understand the language the message is delivered in?

Finally, enjoy SC06 in Tampa. Sadly I will not be joining you.

—–

Copyright (c) Christopher Lazou, HiPerCom Consultants, Ltd., UK. November 2006. Brands and names are the property of their respective owners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ABB Upgrades Produce Up to 30 Percent Energy Reduction for HPE Supercomputers

June 6, 2020

The world’s supercomputers are currently allied in a common goal: defeating COVID-19. To analyze the billions upon billions of molecules that might produce helpful therapeutics (or even a vaccine), an unimaginable amou Read more…

By Oliver Peckham

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This