The SC-ingularity is Near

By Michael Feldman

November 10, 2006

With just a weekend between us and the Supercomputing 2006 Conference (SC06) in Florida, most of my thoughts have already turned to Tampa. One thing I'm personally intrigued with this year is the choice of the conference keynote speaker, Ray Kurzweil. Although not a supercomputing groupie in the classical sense, Kurzweil has made a name for himself as an information technology visionary.

His latest book, “The Singularity is Near: When Humans Transcend Biology,” is a compendium of much of his thinking over the last two decades. In the book, Kurzweil describes how, in the not too distant future, we will develop computer intelligence that will far exceed that of human intelligence. At that point, biological and non-biological intelligence will merge and the human race will reach what he calls “Singularity.” Kurzweil says that at this point, technological change will proceed so rapidly that it will represent “a rupture in the fabric of human history.”

A number of futurists have proposed a similar vision, but Kurzweil has put an interesting twist on it. Since he sees the rate of technological growth as a purely exponential progression rather than a linear progression, the attainment of Singularity will come within this century. He backs this up by citing a natural phenomenon called “the law of accelerating returns,” in which an evolutionary process, such as technological innovation, creates a positive feedback loop to continuously accelerate the rate of change.

He's not claiming that specific technologies are on exponential tracks. For example, Moore's Law, which states that the number of transistors on a silicon chip will double every 18 months, will eventually run out of steam. Kurzweil predicts that Moore's Law will die a dignified death no later than 2019 as the limitations on semiconductor physics take hold. But just as vacuum tubes disappeared from computers in the 1960s, the broader trend of computing evolution will continue on beyond silicon chips. Kurzweil himself is betting on three-dimensional molecular computing after 2020.

Not everyone shares Kurzweil's take on the future. Professional technology kibitzers, such as Kevin Kelley and John Horgan, have written well-considered critiques of Kurzweil's transhumanistic views. In a recent (November 5th) CSPAN interview, a caller from Oak Ridge National Laboratory (ORNL) phoned in and labeled him a “crackpot.” The ORNLian said Kurzweil's explanation of exponential technological growth was “bogus” and challenged him on some specific assertions. Kurzweil, — obviously no stranger to these types of attacks — calmly defended his views and proceeded to the next caller.

Kurzweil is no crackpot. He is a recognized authority in the fields of computer science and artificial intelligence. Among his inventions are the first computer-based reading machines for the blind. In 2002, Kurzweil was inducted into the U.S. Patent Office's National Inventors Hall of Fame. He has received numerous awards and accolades, including the Lemelson-MIT Prize, the National Medal of Technology and ACM's Grace Murray Hopper Award. While not collecting awards, Kurzweil is busy developing his nine businesses in OCR, music synthesis, speech recognition, reading technology, virtual reality, financial investment, cybernetic art, and other areas of artificial intelligence.

Barbara Horner-Miller, the SC06 chair, had this to say about Kurzweil: “The role of the keynote speaker is to get attendees thinking and interacting. So ideally it is someone who is interesting, stimulating and somewhat controversial. As soon as Ray Kurzweil's name came up, I knew we had our speaker ….”

—–

Locks Be Gone

Back to the present. Before we start building 3-D compute engines, we're going to need to figure out multi-threaded programming first. There was an interesting article in Technology Review last week called “The Trouble with Multi-Core Computers” that talks about some of the multi-threading programming challenges. The author, Kate Green, focuses on an approach called “transactional memory,” which allows the programmer to use shared data in a multi-threaded environment without having to manage locks.

Writes Green: “It actually allows numerous transactions to share the same memory at the same time. When a transaction is complete, the system verifies that other transactions haven't made changes in the memory that would hinder the outcome of the first transaction. If they have, then the transaction is re-executed until it succeeds.”

Transactional memory models, like the MIT one cited in this article, usually rely on some combination of software and hardware to work. A software-based model is called software transactional memory (STM), and until hardware assistance is developed, STM is the only practical implementation.

There are a multiple benefits to transactional memory. The obvious one is that the programmer is relieved of the burden of managing thread-safe critical regions to keep his data coherent. Not only does this simplify the coder's job, it also removes the threat of deadlocks, the bane of multi-threaded programming and the cause of many a sleepless night for the software engineer.

And for the performance obsessed, transactional memory can increase concurrency over lock-based approaches — perhaps substantially. This is because the threads no longer have to wait for access to shared memory. In addition, different threads can be working on different parts of the same data structure that would normally be controlled by a single lock. At this point you might be thinking: Haven't we just shifted the overhead of synchronization to the memory system? Yes and no. The transactional memory approach relies on the fact that data contention between threads is a rare occurrence. Most of the time only a single thread is reading or writing a particular data item. So instead of paying the price of synchronization at every access, a transactional system only needs to track memory requests and sort things out when a collision occurs.

I say only, but in reality sorting out the memory accesses turns out to be the fundamental problem with transactional memory. Maintaining the order of memory accesses is difficult. Some of the models get a little loose with the memory ordering, and while that appeals to hardware designers, software developers expect deterministic memory access.

I'll close with a comment from the High-End Crusader, who offers his perspective on the Technology Review article:

“Does Kate Green's short piece on MIT's Krste Asanovic do a better job of articulating the problems that computing faces — as we transition to homogeneous (and heterogeneous) polycore* processor dies — than will next Friday's SC06 distinguished panel on multicore? Kate calls for the reinvention of parallel programming. She is clearly right. This is the $64,000 question in polycore.

“Programming is possible precisely when the programming abstractions are an order of magnitude less burdensome than the execution abstractions, which are managed by the runtime system. Designing good programming abstractions requires a good nose for which execution abstractions are most dangerous.

“If you think about it, transactions abstract from synchronization. Of course, microarchitects will obsess about whether the cores should transact against on-die shared memory or against off-die shared memory or both? That's their thing.

“But the real question stems from the hard fact that parallel computing is now, and has always been, a hard sell. Perhaps the wholesale replacement of synchronization by transactions will tempt Joe Programmer to hop on board the parallel-computing vessel. We need him. We need to offer him beer (or single-malt scotch) that goes down smooth. The future of computing depends on it.”

* In this context, “multicore” means 2X, 4X, … “polycore” means 128X, 256X, …

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This