The SC-ingularity is Near

By Michael Feldman

November 10, 2006

With just a weekend between us and the Supercomputing 2006 Conference (SC06) in Florida, most of my thoughts have already turned to Tampa. One thing I'm personally intrigued with this year is the choice of the conference keynote speaker, Ray Kurzweil. Although not a supercomputing groupie in the classical sense, Kurzweil has made a name for himself as an information technology visionary.

His latest book, “The Singularity is Near: When Humans Transcend Biology,” is a compendium of much of his thinking over the last two decades. In the book, Kurzweil describes how, in the not too distant future, we will develop computer intelligence that will far exceed that of human intelligence. At that point, biological and non-biological intelligence will merge and the human race will reach what he calls “Singularity.” Kurzweil says that at this point, technological change will proceed so rapidly that it will represent “a rupture in the fabric of human history.”

A number of futurists have proposed a similar vision, but Kurzweil has put an interesting twist on it. Since he sees the rate of technological growth as a purely exponential progression rather than a linear progression, the attainment of Singularity will come within this century. He backs this up by citing a natural phenomenon called “the law of accelerating returns,” in which an evolutionary process, such as technological innovation, creates a positive feedback loop to continuously accelerate the rate of change.

He's not claiming that specific technologies are on exponential tracks. For example, Moore's Law, which states that the number of transistors on a silicon chip will double every 18 months, will eventually run out of steam. Kurzweil predicts that Moore's Law will die a dignified death no later than 2019 as the limitations on semiconductor physics take hold. But just as vacuum tubes disappeared from computers in the 1960s, the broader trend of computing evolution will continue on beyond silicon chips. Kurzweil himself is betting on three-dimensional molecular computing after 2020.

Not everyone shares Kurzweil's take on the future. Professional technology kibitzers, such as Kevin Kelley and John Horgan, have written well-considered critiques of Kurzweil's transhumanistic views. In a recent (November 5th) CSPAN interview, a caller from Oak Ridge National Laboratory (ORNL) phoned in and labeled him a “crackpot.” The ORNLian said Kurzweil's explanation of exponential technological growth was “bogus” and challenged him on some specific assertions. Kurzweil, — obviously no stranger to these types of attacks — calmly defended his views and proceeded to the next caller.

Kurzweil is no crackpot. He is a recognized authority in the fields of computer science and artificial intelligence. Among his inventions are the first computer-based reading machines for the blind. In 2002, Kurzweil was inducted into the U.S. Patent Office's National Inventors Hall of Fame. He has received numerous awards and accolades, including the Lemelson-MIT Prize, the National Medal of Technology and ACM's Grace Murray Hopper Award. While not collecting awards, Kurzweil is busy developing his nine businesses in OCR, music synthesis, speech recognition, reading technology, virtual reality, financial investment, cybernetic art, and other areas of artificial intelligence.

Barbara Horner-Miller, the SC06 chair, had this to say about Kurzweil: “The role of the keynote speaker is to get attendees thinking and interacting. So ideally it is someone who is interesting, stimulating and somewhat controversial. As soon as Ray Kurzweil's name came up, I knew we had our speaker ….”

—–

Locks Be Gone

Back to the present. Before we start building 3-D compute engines, we're going to need to figure out multi-threaded programming first. There was an interesting article in Technology Review last week called “The Trouble with Multi-Core Computers” that talks about some of the multi-threading programming challenges. The author, Kate Green, focuses on an approach called “transactional memory,” which allows the programmer to use shared data in a multi-threaded environment without having to manage locks.

Writes Green: “It actually allows numerous transactions to share the same memory at the same time. When a transaction is complete, the system verifies that other transactions haven't made changes in the memory that would hinder the outcome of the first transaction. If they have, then the transaction is re-executed until it succeeds.”

Transactional memory models, like the MIT one cited in this article, usually rely on some combination of software and hardware to work. A software-based model is called software transactional memory (STM), and until hardware assistance is developed, STM is the only practical implementation.

There are a multiple benefits to transactional memory. The obvious one is that the programmer is relieved of the burden of managing thread-safe critical regions to keep his data coherent. Not only does this simplify the coder's job, it also removes the threat of deadlocks, the bane of multi-threaded programming and the cause of many a sleepless night for the software engineer.

And for the performance obsessed, transactional memory can increase concurrency over lock-based approaches — perhaps substantially. This is because the threads no longer have to wait for access to shared memory. In addition, different threads can be working on different parts of the same data structure that would normally be controlled by a single lock. At this point you might be thinking: Haven't we just shifted the overhead of synchronization to the memory system? Yes and no. The transactional memory approach relies on the fact that data contention between threads is a rare occurrence. Most of the time only a single thread is reading or writing a particular data item. So instead of paying the price of synchronization at every access, a transactional system only needs to track memory requests and sort things out when a collision occurs.

I say only, but in reality sorting out the memory accesses turns out to be the fundamental problem with transactional memory. Maintaining the order of memory accesses is difficult. Some of the models get a little loose with the memory ordering, and while that appeals to hardware designers, software developers expect deterministic memory access.

I'll close with a comment from the High-End Crusader, who offers his perspective on the Technology Review article:

“Does Kate Green's short piece on MIT's Krste Asanovic do a better job of articulating the problems that computing faces — as we transition to homogeneous (and heterogeneous) polycore* processor dies — than will next Friday's SC06 distinguished panel on multicore? Kate calls for the reinvention of parallel programming. She is clearly right. This is the $64,000 question in polycore.

“Programming is possible precisely when the programming abstractions are an order of magnitude less burdensome than the execution abstractions, which are managed by the runtime system. Designing good programming abstractions requires a good nose for which execution abstractions are most dangerous.

“If you think about it, transactions abstract from synchronization. Of course, microarchitects will obsess about whether the cores should transact against on-die shared memory or against off-die shared memory or both? That's their thing.

“But the real question stems from the hard fact that parallel computing is now, and has always been, a hard sell. Perhaps the wholesale replacement of synchronization by transactions will tempt Joe Programmer to hop on board the parallel-computing vessel. We need him. We need to offer him beer (or single-malt scotch) that goes down smooth. The future of computing depends on it.”

* In this context, “multicore” means 2X, 4X, … “polycore” means 128X, 256X, …

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire