The Software Challenges of Petascale Computing

By Nicole Hemsoth

November 10, 2006

In this HPCwire interview, Kathy Yelick, one of the world's leading performance evaluation experts, discusses software challenges related to petascale and other large-scale computing systems. Yelick is a professor of computer science at UC Berkeley, with a joint appointment in Lawrence Berkeley Lab's Computational Research Division, where she leads the Future Technologies Group and the Berkeley Institute for Performance Studies.

HPCwire: Are petascale initiatives putting enough emphasis on software?

Yelick: No. Unfortunately, the race for each major performance milestone, in this case petascale, has resulted in a de-emphasis on software. Procurement teams and system developers vying for the first petascale platform need to put as much money as possible into hardware in order to be first. This leaves less funding for software. The situation has gotten worse over the past decade, when multiple agencies were supporting HPC software development.

HPCwire: Assuming the important goal isn't peak or Linpack petaflops performance, but sustained petaflops performance across a spectrum of applications, what software challenges need to be addressed?

Yelick: The major software challenge facing the petascale efforts is the explosion in hardware parallelism, which will require a complete redesign of applications, libraries, and algorithms to reach the level of parallelism needed to fully utilize a petascale machine. This parallelism increase is coming from the introduction of multi-core processors within the compute nodes and the trend towards building machines out of a larger number of smaller compute nodes. Other challenges include the hierarchical nature of these machines, the use of hardware accelerators such as SIMD units within compute nodes, and the trend toward lower degree networks. Full crossbars for petascale machines are unaffordable. Software needs to adapt to these features, and I believe it will. The question is how general the solutions will be and therefore how large the set of petascale applications will be. The reliability of these systems is also a major concern, and one that I think represents the largest risk for specific machines. We need to have better methods for handling hardware and software failures throughout the software stack.

HPCwire: Which of these software challenges are hardest? How much can be accomplished by the 2010 timeframe?

Yelick: Reliability is probably the hardest, because so far we have written user-level software assuming that the lower level system is mostly reliable. Checkpointing is the only commonly used technique, and the Berkeley Lab Checkpoint/Restart project is developing software for petascale systems; but this model is useful only as long as failures are not too frequent. There are research efforts to develop new ways of writing fault-tolerant software, but the solution is not yet clear. In the meantime, we need to do a very good job of testing systems software, in particular operating systems, to reduce the frequency of failures.

HPCwire: With compilers, there is the challenge of scaling to petaflop architectures and also the challenge of handling heterogeneous architectures with multiple processor types that a number of vendors are talking about. Can you comment on these challenges?

Yelick: Heterogeneous processors represent a new compiler challenge, because, at the very least, they increase the optimization space for code generation, which is already very difficult to navigate. Automatically tuned libraries like Atlas, FFTW and our Berkeley OSKI library represent an approach for getting high quality code generated for specific numerical kernels. Heterogeneous processors can fit into this model, as small code snippets written in assembly language can be incorporated into the search space. And at least two of the SciDAC efforts, PERI and CScADS, are working on generalizing these ideas to a new type of compiler which uses search during code generation. To me, the challenge represented by these processors is not the heterogeneity per se, but the difficulty of explicitly managing the memory systems, which may have separate memory spaces or alignment rules for some of the processors. The Cell processor and BG/L double hummer are good examples. If moving data within the heterogeneous processor is too expensive, these systems may not be effective. If they are fast but hard to use, the problem will be putting sufficient resources into the development of compilers, libraries, and applications software to take advantage of them.

HPCwire: The DARPA HPCS program heavily stresses productivity, along with performance. How can programming languages help productivity?

Yelick: The commercial world has experienced tremendous increases in productivity from language features such as strong typing, which catches errors early, garbage collection and the heavy use of libraries or components, which are made easier through simple interfaces that come from good language support. For example, if a user is managing memory allocation and deallocation, and keeping track of complex data types manually by passing type flags in the code, this significantly complicates the application code, but also make it more difficult to package components with clean interfaces that others are likely to understand easily and use.

HPCwire: Can good programming languages and other software get around bad machines?

Yelick: No. There is nothing software can do to get around bad machine design. Global address space languages like UPC, CAF, and Titanium are in some sense giving good hardware an advantage over bad by trying to expose features such as low overhead communication or global address space support. That said, one of the goals of the Berkeley UPC compiler is to make UPC an effective language for a larger class of machines and for less sophisticated programmers. We have advocated language extensions such as non-blocking bulk data reads and writes to allow programmers to obtain the best possible performance on clusters, and are also working on compiler technology to automatically optimize programs written in a fine-grained style. This could make programs written for a global address space machine like the Cray X1E run reasonably well on generic clusters–not as well as on the X1E, but reasonably well.

HPCwire: What are the limits of MPI's usefulness? What would it be like relying on MPI for petascale computing?

Yelick: MPI is likely to be a very popular and effective programming model on petascale machines. There are two issues, one related to performance and the other to ease of use. For performance, the problem is that the two-sided protocol in MPI, which involves message matching, and the requirement of message ordering all slow down data transfer. The fastest mechanism on a machine with minimal RDMA support is to write data directly from one processor into another processor's memory. Fast implementations of MPI do use this mechanism, but it requires some protocol overhead, since the remote address is not known to the sending processor. As we've shown in our UPC work, one-sided communication can be used in bisection-limited problems, like global FFTs, to improve communication overlap and reduce running time. At a petascale, bisection bandwidth is going to be expensive, and MPI may not give the best utilization of the network or the best management of memory due to the need for buffering. From an ease-of-use standpoint, I think the issue with MPI is that the community of petascale programmers, like terascale programmers today, will be small, because the barrier to entry for an application code is high. There are many computational scientists today who are not using parallel machines at all. This will have to change with the shift towards multi-core, but the question is whether they will adopt a scalable programming model.

HPCwire: Talk about the importance of partitioned global address space, or PGAS, programming languages.

Yelick: Aside from my answers to the previous question, PGAS languages offer a real advantage over OpenMP for shared memory platforms, because they give programmers the opportunity to express locality properties of the data structures. This makes the PGAS models an alternative to the hybrid MPI/OpenMP model for hierarchical machines, which has proven difficult to use.

But aside from the specifics on PGAS languages, I think they represent an important step in HPC programming models, because they've demonstrated that new languages are still a viable option, in spite of the backlash that occurred when HPF failed to take hold. The PGAS languages are popular within some government agencies and labs, including the work at AHPCRC on CFD codes in UPC. We have also learned some important lessons in the UPC process: interoperability with other programming models (in particular MPI) and ubiquity across platforms are essential to success. We have new methods for analyzing and quantifying productivity; and found that performance is still critical to swaying the most elite of HPC programmers.

HPCwire: What's the status of these languages today, including Berkeley UPC?

Yelick: UPC has an active community consortium that meets regularly to work on language design issues, maintain the language spec, and exchange implementation and application experience. There is a UPC compiler of some form for nearly every serial and parallel platform, including vendor compilers from Cray, HP, and IBM, and open source compilers from Intrepid, Inc., Michigan Tech and Berkeley Lab. The Berkeley compiler has optimized implementations using native communication layers for the Cray XT3, Quadrics, Myrinet, Altix, and the IBM SP platforms. Co-Array Fortran is being adopted into the Fortran spec, and in addition to the Cray CAF compiler, there is an open source effort led by John Mellor-Crummey at Rice. That compiler is designed for portability; it uses a source-to-source translation model like Berkeley UPC, and there are plans to do work on porting and releases in the near future. Titanium is still primarily a Berkeley effort, but it is used outside Berkeley and the compiler runs on many parallel and serial platforms. Berkeley UPC, Intrepid's gcc-upc, Titanium, and at least one instance of the Rice CAF compiler all use our open source communication layer called GASNet, which helps leverage the porting effort. These three PGAS languages will all be represented at the UPC booth (#342) at SC06. We will have compilers to install on your laptops, as well as posters and papers showing application experience and benchmark results.

HPCwire: Some people say that if there's a lot of pain involved, they won't switch to a new programming language. How can you motivate people to migrate to a more efficient new language?

Yelick: The key is that, because of interoperability, full applications do not need to be rewritten. Instead, individual components can be written in these languages as new algorithms are developed for the increasing machine scale. I am working with Parry Husbands and Esmond Ng, for example, on a fast sparse direct linear solver written in UPC. This may end up in an application without rewriting the rest of the code. And if the performance gains of new languages are significant, some people who care deeply about performance will switch. The harder argument is productivity, because while the community as a whole might save significant amounts of time and money in the long run by rewriting some code in new languages, this is difficult to quantify up front; and from the short term perspective of a 3-year or 5-year project, it is difficult to justify.

HPCwire: Where do you see MATLAB fitting into HPC, versus languages like UPC and CAF?

Yelick: MATLAB is very important, because the computational science and engineering communities in general (outside of HPC) are sold on the productivity advantage of MATLAB. They have voted with their feet by using MATLAB instead of languages like Fortran, C, C++ and Java. The problem is moving MATLAB into the large scale, both machine scale and software scale. The array statements in MATLAB make it a natural data parallel language, but more general forms of parallelism will be needed for large machines and irregular applications. There are several efforts to include parallelism in MATLAB by calling parallel libraries, extending the language, or performing compiler analysis on the code, and I think these will help to make parallel machines more accessible. On the other hand, I'm afraid that the difference between programming-in-the-small and programming-in-the-large (with separate modules, large application teams, complicated data structures and interfaces) are sometimes overlooked–languages that are very good at small programming tasks are not the best for large ones.

HPCwire: Will Fortran continue to be the fastest language? What about C and Java?

Yelick: This is an interesting question. Most vendor-supplied Fortran compilers share the backend, including optimization and code generation, with the C/C++ compilers. So in principle, the performance for the same program should be identical. There are still semantic differences between the languages, which will require the use of features like “restrict” in C/C++ to get the equivalent programs, and more of these may be needed in the C spec when it comes to multidimensional arrays. And programs that use all of the features of object-orientation and pointer-based data structures are unlikely to be as fast as their stripped-down counterparts. But the investment in Fortran compilers is not likely to be as high as in C/C++. Java is a different point on the spectrum: on the one hand the higher level of abstraction and need for automatic memory management add overhead, but the use of just-in-time compiler technology opens the door to optimizations that are not possible in a statically compiled environment.

HPCwire: Do you want to say anything about scaling algorithms for petascale computing?

Yelick: I think we need to rethink our algorithms to look for all possible sources of parallelism, rather than the single-level view that we have used recently. An upcoming SC06 paper with Shan, Strohmaier, Qiang, and Bailey is a case study in scaling and performance modeling, which reflects our ability to understand application performance on large machines. We look at a beam interaction application from accelerator modeling and develop a series of performance models to predict performance of this application code. Performance modeling, and therefore a simple understanding of performance, becomes increasingly difficult as the machines scale, as they become more hierarchical, and as network contention increases. All of these will be serious issues on petascale machines. The SC06 paper will be presented by Erich Strohmaier on Tuesday, Nov. 14, 4:30-5:00 in 22-23. We will also have copies of the paper and some of the authors will be around for questions at the LBNL booth (#1812) on the exhibit floor.

HPCwire: Is there anything important that we missed talking about?

Yelick: I think the introduction of parallelism into mainstream computing is both a challenge and opportunity for the HPC community. We must be able to handle the increase in parallelism along with everyone else, but if ever there was a time to innovate in parallel hardware, languages, and software, this is it. There are very likely to be new languages and programming models for multi-core programming, and the HPC community has the chance to take advantage of that software revolution by both influencing and using these innovations.

—–

Kathy Yelick is a professor of computer science at UC Berkeley. She has a joint appointment in Berkeley Lab's Computational Research Division, where she is the lead for the Division's Future Technologies Group and the Berkeley Institute for Performance Studies. Kathy received her Bachelors, Masters, and PhD degrees in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology. Her research interests include parallel computing, memory hierarchy optimizations, programming languages and compilers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This