The Software Challenges of Petascale Computing

By Nicole Hemsoth

November 10, 2006

In this HPCwire interview, Kathy Yelick, one of the world's leading performance evaluation experts, discusses software challenges related to petascale and other large-scale computing systems. Yelick is a professor of computer science at UC Berkeley, with a joint appointment in Lawrence Berkeley Lab's Computational Research Division, where she leads the Future Technologies Group and the Berkeley Institute for Performance Studies.

HPCwire: Are petascale initiatives putting enough emphasis on software?

Yelick: No. Unfortunately, the race for each major performance milestone, in this case petascale, has resulted in a de-emphasis on software. Procurement teams and system developers vying for the first petascale platform need to put as much money as possible into hardware in order to be first. This leaves less funding for software. The situation has gotten worse over the past decade, when multiple agencies were supporting HPC software development.

HPCwire: Assuming the important goal isn't peak or Linpack petaflops performance, but sustained petaflops performance across a spectrum of applications, what software challenges need to be addressed?

Yelick: The major software challenge facing the petascale efforts is the explosion in hardware parallelism, which will require a complete redesign of applications, libraries, and algorithms to reach the level of parallelism needed to fully utilize a petascale machine. This parallelism increase is coming from the introduction of multi-core processors within the compute nodes and the trend towards building machines out of a larger number of smaller compute nodes. Other challenges include the hierarchical nature of these machines, the use of hardware accelerators such as SIMD units within compute nodes, and the trend toward lower degree networks. Full crossbars for petascale machines are unaffordable. Software needs to adapt to these features, and I believe it will. The question is how general the solutions will be and therefore how large the set of petascale applications will be. The reliability of these systems is also a major concern, and one that I think represents the largest risk for specific machines. We need to have better methods for handling hardware and software failures throughout the software stack.

HPCwire: Which of these software challenges are hardest? How much can be accomplished by the 2010 timeframe?

Yelick: Reliability is probably the hardest, because so far we have written user-level software assuming that the lower level system is mostly reliable. Checkpointing is the only commonly used technique, and the Berkeley Lab Checkpoint/Restart project is developing software for petascale systems; but this model is useful only as long as failures are not too frequent. There are research efforts to develop new ways of writing fault-tolerant software, but the solution is not yet clear. In the meantime, we need to do a very good job of testing systems software, in particular operating systems, to reduce the frequency of failures.

HPCwire: With compilers, there is the challenge of scaling to petaflop architectures and also the challenge of handling heterogeneous architectures with multiple processor types that a number of vendors are talking about. Can you comment on these challenges?

Yelick: Heterogeneous processors represent a new compiler challenge, because, at the very least, they increase the optimization space for code generation, which is already very difficult to navigate. Automatically tuned libraries like Atlas, FFTW and our Berkeley OSKI library represent an approach for getting high quality code generated for specific numerical kernels. Heterogeneous processors can fit into this model, as small code snippets written in assembly language can be incorporated into the search space. And at least two of the SciDAC efforts, PERI and CScADS, are working on generalizing these ideas to a new type of compiler which uses search during code generation. To me, the challenge represented by these processors is not the heterogeneity per se, but the difficulty of explicitly managing the memory systems, which may have separate memory spaces or alignment rules for some of the processors. The Cell processor and BG/L double hummer are good examples. If moving data within the heterogeneous processor is too expensive, these systems may not be effective. If they are fast but hard to use, the problem will be putting sufficient resources into the development of compilers, libraries, and applications software to take advantage of them.

HPCwire: The DARPA HPCS program heavily stresses productivity, along with performance. How can programming languages help productivity?

Yelick: The commercial world has experienced tremendous increases in productivity from language features such as strong typing, which catches errors early, garbage collection and the heavy use of libraries or components, which are made easier through simple interfaces that come from good language support. For example, if a user is managing memory allocation and deallocation, and keeping track of complex data types manually by passing type flags in the code, this significantly complicates the application code, but also make it more difficult to package components with clean interfaces that others are likely to understand easily and use.

HPCwire: Can good programming languages and other software get around bad machines?

Yelick: No. There is nothing software can do to get around bad machine design. Global address space languages like UPC, CAF, and Titanium are in some sense giving good hardware an advantage over bad by trying to expose features such as low overhead communication or global address space support. That said, one of the goals of the Berkeley UPC compiler is to make UPC an effective language for a larger class of machines and for less sophisticated programmers. We have advocated language extensions such as non-blocking bulk data reads and writes to allow programmers to obtain the best possible performance on clusters, and are also working on compiler technology to automatically optimize programs written in a fine-grained style. This could make programs written for a global address space machine like the Cray X1E run reasonably well on generic clusters–not as well as on the X1E, but reasonably well.

HPCwire: What are the limits of MPI's usefulness? What would it be like relying on MPI for petascale computing?

Yelick: MPI is likely to be a very popular and effective programming model on petascale machines. There are two issues, one related to performance and the other to ease of use. For performance, the problem is that the two-sided protocol in MPI, which involves message matching, and the requirement of message ordering all slow down data transfer. The fastest mechanism on a machine with minimal RDMA support is to write data directly from one processor into another processor's memory. Fast implementations of MPI do use this mechanism, but it requires some protocol overhead, since the remote address is not known to the sending processor. As we've shown in our UPC work, one-sided communication can be used in bisection-limited problems, like global FFTs, to improve communication overlap and reduce running time. At a petascale, bisection bandwidth is going to be expensive, and MPI may not give the best utilization of the network or the best management of memory due to the need for buffering. From an ease-of-use standpoint, I think the issue with MPI is that the community of petascale programmers, like terascale programmers today, will be small, because the barrier to entry for an application code is high. There are many computational scientists today who are not using parallel machines at all. This will have to change with the shift towards multi-core, but the question is whether they will adopt a scalable programming model.

HPCwire: Talk about the importance of partitioned global address space, or PGAS, programming languages.

Yelick: Aside from my answers to the previous question, PGAS languages offer a real advantage over OpenMP for shared memory platforms, because they give programmers the opportunity to express locality properties of the data structures. This makes the PGAS models an alternative to the hybrid MPI/OpenMP model for hierarchical machines, which has proven difficult to use.

But aside from the specifics on PGAS languages, I think they represent an important step in HPC programming models, because they've demonstrated that new languages are still a viable option, in spite of the backlash that occurred when HPF failed to take hold. The PGAS languages are popular within some government agencies and labs, including the work at AHPCRC on CFD codes in UPC. We have also learned some important lessons in the UPC process: interoperability with other programming models (in particular MPI) and ubiquity across platforms are essential to success. We have new methods for analyzing and quantifying productivity; and found that performance is still critical to swaying the most elite of HPC programmers.

HPCwire: What's the status of these languages today, including Berkeley UPC?

Yelick: UPC has an active community consortium that meets regularly to work on language design issues, maintain the language spec, and exchange implementation and application experience. There is a UPC compiler of some form for nearly every serial and parallel platform, including vendor compilers from Cray, HP, and IBM, and open source compilers from Intrepid, Inc., Michigan Tech and Berkeley Lab. The Berkeley compiler has optimized implementations using native communication layers for the Cray XT3, Quadrics, Myrinet, Altix, and the IBM SP platforms. Co-Array Fortran is being adopted into the Fortran spec, and in addition to the Cray CAF compiler, there is an open source effort led by John Mellor-Crummey at Rice. That compiler is designed for portability; it uses a source-to-source translation model like Berkeley UPC, and there are plans to do work on porting and releases in the near future. Titanium is still primarily a Berkeley effort, but it is used outside Berkeley and the compiler runs on many parallel and serial platforms. Berkeley UPC, Intrepid's gcc-upc, Titanium, and at least one instance of the Rice CAF compiler all use our open source communication layer called GASNet, which helps leverage the porting effort. These three PGAS languages will all be represented at the UPC booth (#342) at SC06. We will have compilers to install on your laptops, as well as posters and papers showing application experience and benchmark results.

HPCwire: Some people say that if there's a lot of pain involved, they won't switch to a new programming language. How can you motivate people to migrate to a more efficient new language?

Yelick: The key is that, because of interoperability, full applications do not need to be rewritten. Instead, individual components can be written in these languages as new algorithms are developed for the increasing machine scale. I am working with Parry Husbands and Esmond Ng, for example, on a fast sparse direct linear solver written in UPC. This may end up in an application without rewriting the rest of the code. And if the performance gains of new languages are significant, some people who care deeply about performance will switch. The harder argument is productivity, because while the community as a whole might save significant amounts of time and money in the long run by rewriting some code in new languages, this is difficult to quantify up front; and from the short term perspective of a 3-year or 5-year project, it is difficult to justify.

HPCwire: Where do you see MATLAB fitting into HPC, versus languages like UPC and CAF?

Yelick: MATLAB is very important, because the computational science and engineering communities in general (outside of HPC) are sold on the productivity advantage of MATLAB. They have voted with their feet by using MATLAB instead of languages like Fortran, C, C++ and Java. The problem is moving MATLAB into the large scale, both machine scale and software scale. The array statements in MATLAB make it a natural data parallel language, but more general forms of parallelism will be needed for large machines and irregular applications. There are several efforts to include parallelism in MATLAB by calling parallel libraries, extending the language, or performing compiler analysis on the code, and I think these will help to make parallel machines more accessible. On the other hand, I'm afraid that the difference between programming-in-the-small and programming-in-the-large (with separate modules, large application teams, complicated data structures and interfaces) are sometimes overlooked–languages that are very good at small programming tasks are not the best for large ones.

HPCwire: Will Fortran continue to be the fastest language? What about C and Java?

Yelick: This is an interesting question. Most vendor-supplied Fortran compilers share the backend, including optimization and code generation, with the C/C++ compilers. So in principle, the performance for the same program should be identical. There are still semantic differences between the languages, which will require the use of features like “restrict” in C/C++ to get the equivalent programs, and more of these may be needed in the C spec when it comes to multidimensional arrays. And programs that use all of the features of object-orientation and pointer-based data structures are unlikely to be as fast as their stripped-down counterparts. But the investment in Fortran compilers is not likely to be as high as in C/C++. Java is a different point on the spectrum: on the one hand the higher level of abstraction and need for automatic memory management add overhead, but the use of just-in-time compiler technology opens the door to optimizations that are not possible in a statically compiled environment.

HPCwire: Do you want to say anything about scaling algorithms for petascale computing?

Yelick: I think we need to rethink our algorithms to look for all possible sources of parallelism, rather than the single-level view that we have used recently. An upcoming SC06 paper with Shan, Strohmaier, Qiang, and Bailey is a case study in scaling and performance modeling, which reflects our ability to understand application performance on large machines. We look at a beam interaction application from accelerator modeling and develop a series of performance models to predict performance of this application code. Performance modeling, and therefore a simple understanding of performance, becomes increasingly difficult as the machines scale, as they become more hierarchical, and as network contention increases. All of these will be serious issues on petascale machines. The SC06 paper will be presented by Erich Strohmaier on Tuesday, Nov. 14, 4:30-5:00 in 22-23. We will also have copies of the paper and some of the authors will be around for questions at the LBNL booth (#1812) on the exhibit floor.

HPCwire: Is there anything important that we missed talking about?

Yelick: I think the introduction of parallelism into mainstream computing is both a challenge and opportunity for the HPC community. We must be able to handle the increase in parallelism along with everyone else, but if ever there was a time to innovate in parallel hardware, languages, and software, this is it. There are very likely to be new languages and programming models for multi-core programming, and the HPC community has the chance to take advantage of that software revolution by both influencing and using these innovations.

—–

Kathy Yelick is a professor of computer science at UC Berkeley. She has a joint appointment in Berkeley Lab's Computational Research Division, where she is the lead for the Division's Future Technologies Group and the Berkeley Institute for Performance Studies. Kathy received her Bachelors, Masters, and PhD degrees in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology. Her research interests include parallel computing, memory hierarchy optimizations, programming languages and compilers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This