DARPA Selects Cray and IBM for Final Phase of HPCS

By Michael Feldman

November 24, 2006

This week, the Defense Advanced Research Projects Agency (DARPA) selected Cray and IBM as the two Phase III developers for the High Productivity Computing Systems (HPCS) program. Initiated in 2002, the program is designed to produce a new generation of cost-effective, highly productive petascale systems for national security, scientific research and industrial users. The first two phases of HPCS were devoted to critical concept studies and assessments, preliminary research and development, and risk reduction engineering. Over the next four years, the third and final phase of the program will encompass development and demonstration of the HPCS technologies, culminating in a prototype system by each of the two vendors in 2010.

“This is a great day for Cray and the worldwide supercomputing community,” said Peter Ungaro, Cray's president and CEO. “The DARPA HPCS program is an important force that is shaping the future of HPC and the entire computer industry. With this Phase III award, DARPA has recognized Cray as a leading innovator with the technology, vision and expertise required to deliver world-class, revolutionary supercomputing systems.”

“IBM, DARPA and the mission partners will collaborate to develop a powerful and innovative design that will enhance the ability of supercomputers to help government, businesses and individuals,” said Bill Zeitler, senior vice president, IBM Systems and Technology Group. “We believe this new system will accelerate scientific breakthroughs, improve our nation's competitiveness and create new market opportunities.”

The DARPA-led program will use money contributed by the NSA and DOE to help fund the effort. Over the next four years, Cray will receive $250 million for their effort, while IBM will receive $244 million. The vendors and their contractors are also expected to make substantial investments in their own systems. According to DARPA, both IBM and Cray are obligated to provide at least 50 percent of the government funding amount in company cost-share.

“The vendors would not be producing these systems where it not for the investment by DARPA.” said HPCS program manager William Harrod, in a DARPA conference call on Wednesday. “They of course would have product lines, but they would not be nearly as aggressive in terms of performance and the ability to deliver productivity to their custoners. The key here is the ability to deliver productivity to the users. One can construct large systems, but then using them and getting performance out of them is the significant challenge. That's the problem we're trying to attack here.”

Harrod noted that high productivity computing will be a key technology for meeting our national security requirements and to enhance our economic competitiveness. “High productivity computing contributes substantially to the design and development of advanced vehicles and weapons, planning and execution of operational military scenarios, the intelligence problems of cryptanalysis and image processing, the maintenance of our nuclear stockpile, and is a key enabler for science and discovery in security-related fields,” he said.

In Phase III of the program, Cray and IBM will complete the hardware and software designs and technical development of their respective systems. The intention is to create machines capable of two petaflops of sustained performance, scalable to four petaflops. This represents a 10-fold performance increase compared to what was available in 2002. Even more significant is the requirement to increase the GUPS (Giga Updates Per Second) performance, which measures a system's ability to perform random memory accesses. This is especially important for applications which process irregular data structures, such as certain critical national security applications. The goal is to achieve GUPS performance of between 8,000 and 64,000. The current high mark goes to IBM Blue Gene/L, which achieves just 35 GUPS.

DARPA has specified some important HPCS Phase III milestones:

   1. Critical design review for software in 18 months.
   2. Critical design review for hardware in 30 months.
   3. Subsystem demonstration in December 2009.
   4. Final prototypes due in 2010.

DARPA will require that the prototype systems developed under HPCS to be at least one quarter of the size needed by the agency's mission partners — the NSA, DOE and NNSA. By the end of 2010, both Cray and IBM will have to demonstrate functional systems that will be evaluated by selected government HPC users.

To ensure economic viability, both vendors will be required to prepare a business plan for the development and commercialization of their products. The idea is to make the new technologies applicable to a range of systems, not just high-end government deployments. By ensuring that these systems are commercially viable, the government will not be the sole customer and thus, will not have to bear the entire burden of driving the evolution of these technologies.

Cray Cascade

The HPCS system being developed by Cray, called Cascade, is based on the company's vision of 'Adaptive Computing', a heterogeneous processing model in which the system software and the compiler/runtime code will assume the responsibility of mapping user applications on to the underlying processor hardware. Cascade will feature extremely high bandwidth global memory, advanced synchronization and multiple processor architectures (scalar, vector, multithreaded, and hardware acclerator). Cray says they will exploit the technology of a variety of partners in areas such as software tools and compilers (The Portand Group – PGI), file systems (Cluster File Systems), and storage (DataDirect Networks). In addition, Cray will rely heavily on AMD's multi-core Opteron processor and HyperTransport technologies.

Though Cray could not commit to the level of Opteron technology for the prototype in the 2010 time frame, 8-core AMD processors are expected to be available within the next two or three years. And while there are no specific plans to use AMD's ATI-derived GPU technology today, Cray CEO Peter Ungaro said that they are looking forward to working with AMD to bring their GPU technology into the Cascade system, as another accelerator option.

Over the next four years, Cray will incorporate elements of the Cascade program into commercially available products, including the peak-petaflops supercomputer, code-named “Baker,” that will be delivered to the Department of Energy's Oak Ridge National Laboratory (ORNL). In addition, ORNL will be one of Cray's Phase III partners, focused around scaling from both the systems perspective and the performance of key applications.

IBM PERCS

For the IBM HPCS effort, called PERCS, the company plans to make use of their POWER-based computer technologies. According to IBM, the DARPA award will substantially increase research and development activities into mainline IBM technologies planned to be delivered in 2010 and beyond, such as the next generation POWER7 processor, the AIX operating system, IBM's General Parallel File System, IBM's Parallel Environment and IBM's Interconnect and Storage Subsystems — technologies that are driving IBM's commercial product portfolio. IBM also plans to develop a robust HPC software stack and development tools to improve programmer productivity.

“These DARPA initiatives will propel IBM to far exceed the traditional 2X performance improvement over 18 months,” said Ravi Arimilli, IBM Fellow and Principal Investigator of POWER7. “We are embarking on a bold journey to deliver a 100X improvement in sustained performance over 48 months with a simpler and easy to use platform. Harnessing the development capabilities of IBM towards this disruptive design will drive the frontiers of science and business.”

Challenges Ahead

The difficulties of accomplishing all this in four years are considerable. At last week's “High Productivity Computing and Usable Petascale Systems” panel at SC06 in Tampa, Panelists Steve Scott (Cray), Rama Govindaraju (IBM), Jim Mitchell (Sun Microsystems) and Bob Lucas (University of Southern California) gave their perspectives on the challenges of DARPA's HPCS program. Jeremy Kepner (MIT Lincoln Laboratory) organized and chaired the panel and also participated in the discussion. Among the group, there was broad consensus about the the biggest challenges for HPCS systems.

It was generally agreed that petascale software (system and application) is trailing petascale hardware. The complexity of programming at this level will limit immediate exploitation of these systems. It was pointed out that increasing (peak) FLOPS is relatively easy to accomplish by just adding more floating-point hardware, but to use the FLOPS productively requires software that can be parallelized. Sun's Mitchell said that until the software scales, these systems will only be used as capacity machines – and rather expensive ones at that. Govindaraju agreed by noting that “peak performance is growing away from sustained performance.”

On the positive side, the use of a flatter memory hierarchy will increase performance and be easier to program compared to the distributed memory model in cluster architectures. This will help to raise the level of software abstraction, one of the key enablers for high productivity. However, the HPCS languages themselves, which are still under development, are not short-term solutions. In the interim, the more established Paritioned Global Address Space (PGAS) Languages, such as Universal Parallel C (UPC), Co-Array Fortran (CAF) and Titanium need to be made more available to give developers access to more productive software environments.

Another common theme from the panel involved system reliability of extremely large machines. When systems scale to tens of thousands or hundreds of thousands of processors and hundreds of terabytes of memory, the MTBF rates are such that a systematic approach must be developed in order to manage component failure — or as Mitchell observed, the ability to “compute through failure.” Ideally this means that hardware and system software mechanisms must be in place to insulate application code from system-level failures. Many of the panelists thought that software resiliency was probably the most important software technology for HPCS systems.

Cray CTO Steve Scott offered a message of optimism. He observed that petaflop hardware is only two years away and the importance of increasing global bandwidth, scaling software for multi-core processors and establishing system resiliency is well-understood, if not yet solved. The development of the hardware, operating system software and programming language environments are all underway. “I think we're going to get there,” concluded Scott.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire