Researcher Explores Phosphorus-And-Silicon Quantum Computer

By Nicole Hemsoth

November 24, 2006

A University of Utah physicist took a step toward developing a superfast computer based on the weird reality of quantum physics by showing it is feasible to read data stored in the form of the magnetic “spins” of phosphorus atoms.

“Our work represents a breakthrough in the search for a nanoscopic [atomic scale] mechanism that could be used for a data readout device,” says Christoph Boehme, assistant professor of physics at the University of Utah. “We have demonstrated experimentally that the nuclear spin orientation of phosphorus atoms embedded in silicon can be measured by very subtle electric currents passing through the phosphorus atoms.”

The study by Boehme and colleagues in Germany will be published in the December issue of the journal Nature Physics and released online Sunday, Nov. 19.

“We have resolved a major obstacle for building a particular kind of quantum computer, the phosphorus-and-silicon quantum computer,” says Boehme. “For this concept, data readout is the biggest issue, and we have shown a new way to read data.”

Boehme, who joined the University of Utah faculty earlier this year, conducted the study with Klaus Lips — a former colleague at the Hahn-Meitner Institute in Berlin — and with graduate students Andre Stegner and Hans Huebl and physicists Martin Stutzmann and Martin S. Brandt of the Technical University of Munich.

A Bit about Quantum Computing

In modern digital computers, information is transmitted by flowing electricity in the form of electrons, which are negatively charged subatomic particles. Transistors in computers are electrical switches that store data as “bits,” in which “off” (no electrical charge) and “on” (charge is present) represent one bit of information: either 0 or 1.

For example, with three bits, there are eight possible combinations of 1 or 0: 1-1-1, 0-1-1, 1-0-1, 1-1-0, 0-0-0, 1-0-0, 0-1-0 and 0-0-1. But three bits in a digital computer can store only one of those eight combinations at a time.

Quantum computers, which have not been built yet, would be based on the strange principles of quantum mechanics, in which the smallest particles of light and matter can be in different places at the same time.

In a quantum computer, one “qubit” — quantum bit — could be both 0 and 1 at the same time. So with three qubits of data, a quantum computer could store all eight combinations of 0 and 1 simultaneously. That means a three-qubit quantum computer could calculate eight times faster than a three-bit digital computer.

Typical personal computers today calculate 64 bits of data at a time. A quantum computer with 64 qubits would be 2 to the 64th power faster, or about 18 billion billion times faster.

Researchers are exploring many approaches to storing and processing information in nanoscopic form — on the scale of molecules and atoms, or one billionth of a meter in size — for quantum computing. They include optical quantum computers that would hold data in the form of on-off switches made of light, ions (electrically charged atoms), the size or energy state of an electron's orbit around an atom, so-called “quantum dots” of material and the “spins” or magnetic orientation of the centers or nuclei of atoms.

A New Spin on Quantum Computers

Boehme's new study deals with an approach to a quantum computer proposed in 1998 by Australian physicist Bruce Kane in a Nature paper titled “A silicon-based nuclear spin quantum computer.” In such a computer, silicon — the semiconductor used in digital computer chips — would be “doped” with atoms of phosphorus, and data would be encoded in the “spins” of those atoms' nuclei. Externally applied electric fields would be used to read and process the data stored as “spins.”

Spin is difficult to explain. A simplified way to describe spin is to imagine that each particle — like an electron or proton in an atom — contains a tiny bar magnet, like a compass needle, that points either up or down to represent the particle's spin. Down and up can represent 0 and 1 in a spin-based quantum computer, in which one qubit could have a value of 0 and 1 simultaneously.

In the new study, Boehme and colleagues used silicon doped with phosphorus atoms. By applying an external electrical current, they were able to “read” the net spin of 10,000 of the electrons and nuclei of phosphorus atoms near the surface of the silicon.

A real quantum computer would need to read the spins of single particles, not thousands of them. But previous efforts, which used a technique called magnetic resonance, were able to read only the net spins of the electrons of 10 billion phosphorus atoms combined, so the new study represents a million-fold improvement and shows it is feasible to read single spins — something that would take another 10,000-fold improvement, Boehme says.

But the point of the study, he adds, is that it demonstrates it is possible to use electrical methods to detect or “read” data stored as not only electron spins but as the more stable spins of atomic nuclei.

“We discovered a mechanism that will allow us to measure the spins of the nuclei of individual phosphorus atoms in a piece of silicon when the phosphorus is close [within about 50 atoms] to the surface,” Boehme says. With improved design, it should be possible to build a much smaller device that “lets us read a single phosphorus nucleus.”

Details of the Experiment

The researchers used a piece of silicon crystal about 300 microns thick — about three times the width of a human hair — less than 3 inches long and about one-tenth of an inch wide. The silicon crystal was doped with phosphorus atoms. Phosphorus atoms were embedded in silicon because too many phosphorus atoms too close together would interact with each other so much that they couldn't store information. The concept is that the nuclear spin from one atom of phosphorus would store one qubit of information.

The scientists used lithography to print two gold electrical contacts onto the doped silicon. Then they placed an extremely thin layer of silicon dioxide — about two billionths of a meter thick — onto the silicon between the gold contacts. As a result, the device's surface had tiny spots where the spins of phosphorus atoms could be detected.

The scientists applied a tiny voltage to the gold contacts, creating an electrical current perhaps 10,000 times smaller than that produced by an AA-size battery, Boehme says. When the current was measured during 100 millionths of a second, it stayed constant, indicating the spins of the phosphorus atoms in the silicon were random, with half pointing up and half pointing down.

Then the device was chilled with liquid helium to 452 degrees below zero Fahrenheit. That made most of the phosphorus spins point down. Next, the researchers applied a magnetic field and microwave radiation to the sample, which makes the phosphorus spins constantly flop up and down in concert for a few billionths of a second.

As a result, the electrical current fluctuated up and down.

“That is basically a readout of phosphorus electron spins,” which, in turn, also can be used to determine the spins of the phosphorus atoms' nuclei based on a previously known relationship between electron spins and nuclear spins, Boehme says.

While Boehme is excited by this advance, numerous obstacles remain before quantum computing becomes a reality.

“If you want to compare the development of quantum computers with classical computers, we probably would be just before the discovery of the abacus,” he says. “We are very early in development.”

—–

Source: University of Utah

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire