Breaking the Medical Image Communication Barrier

By Nicole Hemsoth

November 27, 2006

Using a new Grid computing system, radiologists, physicians and pediatric oncologists at 40 hospitals all over North America are now quickly and securely exchanging high-resolution medical images.

One hoped-for result will be that the doctors of young cancer patients will know more quickly whose treatment is not working and be able to change course. Others include making second opinions from specialists anywhere easily available; and quicker, closer monitoring of ongoing clinical research and diagnostic practice.

“We have broken the medical image communication barrier,” says Stephan Erberich, a computer scientist who is the Director of Functional Imaging and Biomedical Informatics at Childrens Hospital Los Angeles and a faculty member of both the USC Keck School of Medicine and the USC Viterbi School of Engineering.

He will demonstrate the Globus MEDICUS system at the upcoming annual meeting of the Radiological Society of North America (RSNA) in Chicago every day from Sunday Nov. 26 through Thursday Nov. 30.

The Globus MEDICUS project makes pediatric cancer researchers and the medical imaging profession at large the latest in the rapidly growing number of scientific and professional communities using Globus open-source Grid collaboration software developed at the USC Viterbi School of Engineering's Information Sciences Institute (ISI) and Argonne National Laboratories (ANL).

Carl Kesselman and Ann Chevernak of ISI, who worked with Erberich in creating MEDICUS, built the system basing themselves directly upon earlier work by the Digital Imaging and Communication In Media (DICOM) standards committee.

DICOM created a uniform electronic format for medical images, one that allow the whole range of commercial imaging devices — X-ray, MRI, and CT — to display and manage images from any other.

But DICOM's potential for transparent exchange between collaborating researchers, and physicians has so far not been realized, because of technological, administrative, and security challenges of confidential patient data, according to Erberich.

As a result, access to the interchangeable data was limited to the hospital where the images are acquired — not even available to a patient's point-of-care facility, if different, unless physically carried there.

“Today if you leave the hospital, you either leave your digitized images behind or you have to carry them on a CDROM,” said Erberich. “This is not the 21st century healthcare we need in a networked society. All kinds of other fields, from banking to air travel now rely on instant information exchange and decision making online. We should be able expect the same level of sophistication in healthcare.”

That day has now arrived, says the scientist. Using the DICOM Grid Interface Service (DGIS) DICOM records at medical facility anywhere are now easily accessible and exchangeable over Grid-secured Internet connections.

The MEDICUS project began when Erberich approached ISI Grid experts Kesselman and Chervenak asking them “to translate DICOM into Grid,” as Erberich described it.

Kesselman had, as part of the Globus project previously helped more than a dozen scientific communities ranging from high-energy physicists to earthquake simulating engineers and geologists share instruments and data, securely and easily.

He immediately saw that the need was a perfect fit for Globus open-source Grid solution. “There had to be new code developed to handle the medical-specific things like DICOM translation and patient confidentiality assurance,” Kesselman said, “but the cool thing is this leverages all of the existing underlying Globus technology that we use in so many other projects.”

In creating key Grid components for MEDICUS, ISI research scientist Chervenak and Kesselman, who is director of the center for Grid technologies at ISI and a research associate professor of computer science in the USC Viterbi School of Engineering worked with Manasee Bhandekar, a computer engineer at the USC Alfred E. Mann Institute. ISI researchers Robert Schuler, Shishir Bharathi and Gaurang Mehta also made significant contributions.

Erberich developed the DICOM to Grid interface and led the inter-disciplinary collaboration between the engineering and clinical teams, working with Childrens Hospital radiologist-in-chief and Chairman Marvin D. Nelson.

The system has been in place since September, and as Nelson describes it, “it's totally transparent. Each facility is now connected to the Grid, using its own interface — you only have to one interface at the hospital, and that serves the whole hospital, reusing the hospital's capital investment in DICOM visualization devices.”

The cost of installing a DGIS node is “trivial,” said Erberich: on the order of $1000 for a Grid gateway, attached to a high-bandwidth net connection. The gateway provides two-way access to the Grid, allowing upload of local images (after de-identification) and also continuing access to a catalog of archived DICOM records. “The nice thing, ” said Nelson, “if a researcher has authorization for a specific record in the catalog, it can be downloaded for use on her own image display.”

One dramatic change in practice will be the ease of review. Researchers can look at observations made anywhere on the grid without leaving their offices.

“We store the images here in the Data Center, ” said Erberich, “but the people who have been assigned to review images, can review them from virtually anywhere.”

“Before” he continued “when we were documenting a research study, it meant that radiologists would have to physically come to a single facility and look through a file cabinet full of physical images. Now, radiologists all over the planet can look at the images at their leisure in their own offices, on their own favorite commercial medical imaging system.”

One critical advantage of this is elimination of backlogs reviewing images, with potentially life-saving results for patients in studies. “We'll probably have a more timely review of scans,” said Robert C. Seeger, M.D., of the Saban Research Institute of Childrens Hospital Los Angeles, a specialist in neuroblastoma who is part of one of the research groups now using the system.

Besides the 13-institution New Approaches in Neuroblastoma Therapy group ( that Seeger is part of, the 27-member Children's Oncology Group ( is now active.

Both the doctors and the computer scientists involved expect this number to skyrocket in coming years, because the entry cost is so low and the possibilities are only beginning to be tapped. Other advantages include:

Greatly increased ease of radiological consultation and study. Any radiologist practicing on rare or unusual conditions can now see only see the small fraction of the total cases that present in one place. Now, “he could sit in Boston and potentially review every single case, from anywhere in the country,” says Seeger.

Imaging research. Scientists studying new techniques will be able to exchange samples instantly. And “we can develop expertise not just for reading, but also processing images,” said Erberich.

Drug development. New techniques depend on imaging experimental animals, typically mice, using bioluminescent markers. Analysis of large bodies of such images requires great computing power. Grid techniques can both share images and the computing power necessary to extract their meaning.

The Globus Alliance is a community of organizations and individuals developing fundamental technologies behind the “Grid,” which lets people share computing power, databases, instruments, and other on-line tools securely across corporate, institutional, and geographic boundaries without sacrificing local autonomy.

Grid computing work has been named one of “Ten Technologies that Will Change the World” by M.I.T. Technology Review, and has received a “Top 100” award as well as a “Most Promising New Technology” honor from R&D Magazine.

The Globus MEDICUS project was supported by the Children's Oncology Group Phase-I Consortium, NIH (grant UO1-BA97452), and the NANT Cancer Foundation.


Source: University of Southern California

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight


[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour


Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This