17th Machine Evaluation Workshop at Daresbury

By Christopher Lazou

December 15, 2006

On December 4th through 6th, 2006, about 250 people (around the same as last year) attended the 17th machine evaluation workshop at CCLRC Daresbury Laboratories, UK. This excellent workshop, in its seventeenth year, is a leading UK national event dedicated to distributed, high performance scientific computing. The principle objective is to encourage close contact between the research communities from the Mathematics, Chemistry, Physics, Engineering and Materials Programmes of EPSRC and the major vendors of mid-range computing systems, workstations, servers, software and peripherals. An increase in academic participation reflected a growing participation from researchers from the other communities, notably from the Natural Environment Research Council (NERC) and Particle Physics & Astronomy (PPARC) Research Council.

Most of the 25 presentations were from vendors, describing their own products on topics such as hardware, compilers, graphics, storage and networking. They focused on cluster solutions, based on commodity chips, interconnect networks and associated file storage systems. An important component of the workshop is the availability of systems for benchmarking evaluation purposes.

In addition, during this year's event there were three parallel, informal breakout sessions. These were focussed on special interest areas, with invited speakers to open the sessions, and have been designed to encourage lively debates, as well as highlight developments and showcase performance features of tools. The breakout sessions' themes were (1) novel architectures (e.g. FPGAs, Cell); (2) software developments enabling higher performance; and (3) Gigabit Ethernet as a high performance interconnect.

There were nineteen companies exhibiting, keen to promote their readymade products, including those based on AMD Opteron, Intel 'Woodcrest' and the Intel Itanium 2 processors. A strong presence of AMD Opteron and Intel 'Woodcrest', dual-core and early quad-core systems, as well as various models of blade products, were on display and available for demonstrations.

Of course other factors often dominate the selection of systems. For example, one trade-off is price/performance. Another is the type and size of application the system is purchased for. This is pertinent especially for commodity clusters and the selection of interconnect fabric. One suspects it depends on how the Total Cost of Ownership (TCO) integral is constructed.

Crispin Keable (IBM) gave a talk titled “And We Also Do Hardware,” describing the three strands IBM is currently pursuing under the Deep Computing umbrella. He reminded the audience that Deep Computing combines a number of techniques — advanced mathematics, domain specific knowledge and software specialisation — to solve extremely complex problems in this sea of digital data. He unconsciously invoked the sentiments from IBM's Quaker progeny by claiming that their strategy is good for the customer, good for the world and good for IBM.
Crispin was frank, recognising that sustained performance and scaling is not very high compared to Linpack. The challenge facing the industry is not only system design, for scalability, power consumption, weight and space, but also software — operating systems, compilers, tools, application porting and licensing.

IBM is tackling these issues with the realization that one size does not fit all. The Power based product line provides advanced systems based on loosely coupled clusters. With the recent $244 million HPCS award (equivalent to roughly 2,440 person years — some would say R&D subsidy) this line is expected to culminate in the Power7 to be used in the PERCS petaflops system.

Research collaborations on the Blue Gene/L architecture and the Cell BE multi-core system on a chip were also briefly described. These included the Blue Brain project, which is researching new insights into how the human brain works. The work could be important for the treatment of debilitating diseases such as schizophrenia, autism and Alzheimer's. Using the Cell BE for heart modelling was presented as another example of research collaboration. The Cell BE chip is also being used as the co-processor (accelerator) on the Roadrunner petaflops system at Los Alamos National Laboratory.

Both Blue Gene/L and Cell BE are examples of experimental technologies moving into niche domains and gradually becoming mainstream. IBM believes that next generation chip designs are focusing on high performance/power consumption ratios and that semiconductor power trends are driving future systems. With hundreds of thousands of processors, software development environments will be severely challenged. Issues such as reliability and fault tolerant management systems, to vitiate MTBF effects, represent additional challenges.

As in previous years, the Daresbury Benchmark results were of great interest. These consisted of a plethora of both serial and distributed memory benchmark results, compiled by Martyn Guest and his team from Daresbury. The benchmarks from many systems, including the latest products from vendors using their latest multi-core chips, were presented. The serial component of the benchmark suite, used to obtain these results, consists of many computational chemistry kernel codes, molecular dynamics, Quantum Monte Carlo, Jacobi Solver, STREAM — measured sustainable memory bandwidth in HPC (TRIAD), plus the ab initio molecular electronic structure package GAMESS-UK and the parallel molecular dynamics benchmark, DL_POLY. The results from SPECfp2000, SPECInt2000, HPC Challenge and other well-known benchmarks were also presented.

With the National HECToR capability computing procurement out of the way, Martyn Guest augmented his serial benchmark analysis from previous years by including a variety of parallel applications, measuring not only performance on a single CPU, but extending the analysis to include application performance on commodity clusters. This approach attempted to address the impact of cluster architectures on performance, a more relevant metric for small- and medium-sized university systems.
High-end systems such as IBM p690+ P5-575, SGI Altix, HP Superdome Itanium 2 and SD64000B Montecito/1600 and Cray XT3 were measured, but only used as points of reference. Martyn concentrated on capacity-based, modest-sized clusters built out of commodity chips, with a typical usage modality of 32 to 64 cores. Given that usage, it turns out that with a few exceptions (e.g. plane wave Car Parinello codes) an HPC low latency and high bandwidth interconnect is not essential, since the application problems tend to be modest, enabling a replicated data approach. A slower interconnect is cheaper and releases around 20 percent of the funds. With larger systems — 128 plus cores and above — a distributed data approach is often essential; and in this case, one needs a high performance interconnect to achieve efficiency.

Performance data presented included that from some 33 systems under evaluation. Most were commodity clusters, but also included high-end systems from SGI, IBM, HP and Cray. Application performance as a function of processor count included results from the disciplines of molecular simulation, using both replicated and distributed data versions of the DL_POLY code; from molecular electronic structure and materials simulation, using the GAMESS-UK and CPMD codes respectively); and from computational engineering with the DNS turbulence codes, ANGUS and PDNS3D.

With some 30 crowded PowerPoint slides of measurements in multicolour schemes, in the end, the real drama revolved around the comparable performance of clusters based on two chips, the Intel EM64T (3.0 GHz) 'Woodcrest' Xeon 5160 and the AMD 254/2218-F Socket (2.66 GHz) Opteron.

Some truisms never change. Martyn emphasised that single-processor benchmarks often provide misleading results given the complexity of current processors and their subsequent utilisation as the building blocks of n-way cluster nodes. If they are dual-core, use both cores, if four-way cores, use all four so that interactions of cache, memory and communications are accounted for in any performance measure. When more cores are added on a chip, the interconnect fabric for transfer rates (bandwidth) to L3 memory needs to be increased proportionately to handle the extra computational power from the extra cores. Otherwise the sharing of memory paths by the additional cores are likely to degrade overall system performance. This argues strongly for the use of “throughput” or “rate” benchmarks rather than the more traditional single processor metrics.

Looking at SPECfp2000 (Rate-4CPUs) relative to the Sun X4100 (Opteron 254/2.8 GHz, 1CPU), the Dell Power Edge 2950/Xeon 5080 (3.73 GHz) 'Bensley' rate is 2.44, the HP ProLiant BL480c Xeon 5160 (3.0 GHz) 'Woodcrest' rate is 3.16, the Sun X4500 (Opteron 285/2.6 GHz) rate is 3.79 and the Sun Fire X2200 (M2 Opteron 2218/2.6 GHz) rate is 4.3. No one at the meeting gave an adequate explanation for the super-scalar parallelism obtained on the Sun Fire X2200, but remember that these systems deliver less than 100 percent of their peak performance on the SPECfp2000 metric. An interesting table was presented showing application scaling performance when using multi-cores on a chip. In general they scaled reasonably well, although there were a few notable exceptions. One major bottleneck identified was the bandwidth imbalance from L2 to L3 memory, where the transfer rate was for one core, but had to deal with bandwidth requirements of two cores.

Christine Kitchen, of Daresbury Laboratory, focused on the benchmark and procurement support they provide to the academic community for purchasing commodity-based cluster systems affordable by academic departments. Attention focused on the core-benchmark suite provided by Daresbury in support of the on-going SRIF-3 exercise (Scientific Research Investment Fund). With an estimated total expenditure of some £38M on HPC systems, this coordinated procurement is dominating the changing cluster landscape across the UK University sector. Note that this procurement process is coordinated by Tony Newjem of Heriot-Watt University, who also presented at the workshop. Expanding on the results shown by Martyn Guest to include higher processor counts, Christine presented benchmarking statistics derived from some 25 systems of clusters reported by the SRIF-3 framework suppliers. These results reinforced the uncertainty of Gigabit Ethernet as the interconnect of choice, as discussed in the associated workshop break out session, while pointing to the wide range of technical competence and benchmarking prowess within the framework suppliers. Christine emphasised the difficulties in providing a comprehensive overview of all the results given the wide range of requirements that characterised the participating Universities in SRIF-3.

Daresbury's findings suggest that the impact of dual-core technologies on cluster performance is strongly dependent on application –- from negligible impact on molecular simulation codes such as DL-POLY to dramatic performance degradation on DNS engineering codes such as PDNS3D and ANGUS. Averaging across all the applications under consideration leads to the Opteron2218-F/2600 dual-core cluster with Infinipath interconnect delivering, on average, 72 percent of the HP SD64000B Superdome (Itanium2 9050 1.6GHz), and the Intel Xeon 5160 “Woodcrest” dual-core cluster with Infiniband delivering 82 percent of the HP SD64000B. Given the complexity of the chips and uncertainty of metrics, the difference in performance between these leading solutions from Intel and AMD was too close to call.

There are many qualifiers to be considered, not least of which was the nature of the parallel application in question. For example, the replicated data approach of DL-POLY-2 was fine for a small cluster of 32 processors, but a disaster for a 1,000-processor system given that global communication traffic was a killer at this level of processor utilisation. Finally, it should be stressed that the results given were not normalised on price/performance, so no specific value-for-money comparisons were made or implied.

The rest of the workshop consisted of presentations from vendors, with a strong contingent of users sharing their experience in installing clusters, and presentations from a number of companies specialising in providing tailored system solutions from commodity components on demand. Instead of buying pre-packaged products from traditional vendors, a contract is placed with a small computer integration company (e.g., ClusterVision, Streamline) to build a cluster from favoured chips and an interconnect network such as Gigabit Ethernet, InfiniBand or Myrinet. These systems vary in size with a few attaining Top500 status. For example the University of Cambridge cluster, built by ClusterVision, was number 20 in the November 2006 Top500 list.

There are some very positive trends in multi-core chip developments, but the workshop also had some surprises. These are too sensitive to be printed here. For those of you keen to add the latest 'gismos' to your facilities, remember the Latin adage: “caveat emptor”.

As the season of goodwill is upon us: Wishing you all, Seasons Greetings and a Peaceful Happy New Year, 2007.


Copyright (c) Christopher Lazou, HiPerCom Consultants, Ltd., UK. December 2006. Brands and names are the property of their respective owners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This