17th Machine Evaluation Workshop at Daresbury

By Christopher Lazou

December 15, 2006

On December 4th through 6th, 2006, about 250 people (around the same as last year) attended the 17th machine evaluation workshop at CCLRC Daresbury Laboratories, UK. This excellent workshop, in its seventeenth year, is a leading UK national event dedicated to distributed, high performance scientific computing. The principle objective is to encourage close contact between the research communities from the Mathematics, Chemistry, Physics, Engineering and Materials Programmes of EPSRC and the major vendors of mid-range computing systems, workstations, servers, software and peripherals. An increase in academic participation reflected a growing participation from researchers from the other communities, notably from the Natural Environment Research Council (NERC) and Particle Physics & Astronomy (PPARC) Research Council.

Most of the 25 presentations were from vendors, describing their own products on topics such as hardware, compilers, graphics, storage and networking. They focused on cluster solutions, based on commodity chips, interconnect networks and associated file storage systems. An important component of the workshop is the availability of systems for benchmarking evaluation purposes.

In addition, during this year's event there were three parallel, informal breakout sessions. These were focussed on special interest areas, with invited speakers to open the sessions, and have been designed to encourage lively debates, as well as highlight developments and showcase performance features of tools. The breakout sessions' themes were (1) novel architectures (e.g. FPGAs, Cell); (2) software developments enabling higher performance; and (3) Gigabit Ethernet as a high performance interconnect.

There were nineteen companies exhibiting, keen to promote their readymade products, including those based on AMD Opteron, Intel 'Woodcrest' and the Intel Itanium 2 processors. A strong presence of AMD Opteron and Intel 'Woodcrest', dual-core and early quad-core systems, as well as various models of blade products, were on display and available for demonstrations.

Of course other factors often dominate the selection of systems. For example, one trade-off is price/performance. Another is the type and size of application the system is purchased for. This is pertinent especially for commodity clusters and the selection of interconnect fabric. One suspects it depends on how the Total Cost of Ownership (TCO) integral is constructed.

Crispin Keable (IBM) gave a talk titled “And We Also Do Hardware,” describing the three strands IBM is currently pursuing under the Deep Computing umbrella. He reminded the audience that Deep Computing combines a number of techniques — advanced mathematics, domain specific knowledge and software specialisation — to solve extremely complex problems in this sea of digital data. He unconsciously invoked the sentiments from IBM's Quaker progeny by claiming that their strategy is good for the customer, good for the world and good for IBM.
 
Crispin was frank, recognising that sustained performance and scaling is not very high compared to Linpack. The challenge facing the industry is not only system design, for scalability, power consumption, weight and space, but also software — operating systems, compilers, tools, application porting and licensing.

IBM is tackling these issues with the realization that one size does not fit all. The Power based product line provides advanced systems based on loosely coupled clusters. With the recent $244 million HPCS award (equivalent to roughly 2,440 person years — some would say R&D subsidy) this line is expected to culminate in the Power7 to be used in the PERCS petaflops system.

Research collaborations on the Blue Gene/L architecture and the Cell BE multi-core system on a chip were also briefly described. These included the Blue Brain project, which is researching new insights into how the human brain works. The work could be important for the treatment of debilitating diseases such as schizophrenia, autism and Alzheimer's. Using the Cell BE for heart modelling was presented as another example of research collaboration. The Cell BE chip is also being used as the co-processor (accelerator) on the Roadrunner petaflops system at Los Alamos National Laboratory.

Both Blue Gene/L and Cell BE are examples of experimental technologies moving into niche domains and gradually becoming mainstream. IBM believes that next generation chip designs are focusing on high performance/power consumption ratios and that semiconductor power trends are driving future systems. With hundreds of thousands of processors, software development environments will be severely challenged. Issues such as reliability and fault tolerant management systems, to vitiate MTBF effects, represent additional challenges.

As in previous years, the Daresbury Benchmark results were of great interest. These consisted of a plethora of both serial and distributed memory benchmark results, compiled by Martyn Guest and his team from Daresbury. The benchmarks from many systems, including the latest products from vendors using their latest multi-core chips, were presented. The serial component of the benchmark suite, used to obtain these results, consists of many computational chemistry kernel codes, molecular dynamics, Quantum Monte Carlo, Jacobi Solver, STREAM — measured sustainable memory bandwidth in HPC (TRIAD), plus the ab initio molecular electronic structure package GAMESS-UK and the parallel molecular dynamics benchmark, DL_POLY. The results from SPECfp2000, SPECInt2000, HPC Challenge and other well-known benchmarks were also presented.

With the National HECToR capability computing procurement out of the way, Martyn Guest augmented his serial benchmark analysis from previous years by including a variety of parallel applications, measuring not only performance on a single CPU, but extending the analysis to include application performance on commodity clusters. This approach attempted to address the impact of cluster architectures on performance, a more relevant metric for small- and medium-sized university systems.
 
High-end systems such as IBM p690+ P5-575, SGI Altix, HP Superdome Itanium 2 and SD64000B Montecito/1600 and Cray XT3 were measured, but only used as points of reference. Martyn concentrated on capacity-based, modest-sized clusters built out of commodity chips, with a typical usage modality of 32 to 64 cores. Given that usage, it turns out that with a few exceptions (e.g. plane wave Car Parinello codes) an HPC low latency and high bandwidth interconnect is not essential, since the application problems tend to be modest, enabling a replicated data approach. A slower interconnect is cheaper and releases around 20 percent of the funds. With larger systems — 128 plus cores and above — a distributed data approach is often essential; and in this case, one needs a high performance interconnect to achieve efficiency.

Performance data presented included that from some 33 systems under evaluation. Most were commodity clusters, but also included high-end systems from SGI, IBM, HP and Cray. Application performance as a function of processor count included results from the disciplines of molecular simulation, using both replicated and distributed data versions of the DL_POLY code; from molecular electronic structure and materials simulation, using the GAMESS-UK and CPMD codes respectively); and from computational engineering with the DNS turbulence codes, ANGUS and PDNS3D.

With some 30 crowded PowerPoint slides of measurements in multicolour schemes, in the end, the real drama revolved around the comparable performance of clusters based on two chips, the Intel EM64T (3.0 GHz) 'Woodcrest' Xeon 5160 and the AMD 254/2218-F Socket (2.66 GHz) Opteron.

Some truisms never change. Martyn emphasised that single-processor benchmarks often provide misleading results given the complexity of current processors and their subsequent utilisation as the building blocks of n-way cluster nodes. If they are dual-core, use both cores, if four-way cores, use all four so that interactions of cache, memory and communications are accounted for in any performance measure. When more cores are added on a chip, the interconnect fabric for transfer rates (bandwidth) to L3 memory needs to be increased proportionately to handle the extra computational power from the extra cores. Otherwise the sharing of memory paths by the additional cores are likely to degrade overall system performance. This argues strongly for the use of “throughput” or “rate” benchmarks rather than the more traditional single processor metrics.

Looking at SPECfp2000 (Rate-4CPUs) relative to the Sun X4100 (Opteron 254/2.8 GHz, 1CPU), the Dell Power Edge 2950/Xeon 5080 (3.73 GHz) 'Bensley' rate is 2.44, the HP ProLiant BL480c Xeon 5160 (3.0 GHz) 'Woodcrest' rate is 3.16, the Sun X4500 (Opteron 285/2.6 GHz) rate is 3.79 and the Sun Fire X2200 (M2 Opteron 2218/2.6 GHz) rate is 4.3. No one at the meeting gave an adequate explanation for the super-scalar parallelism obtained on the Sun Fire X2200, but remember that these systems deliver less than 100 percent of their peak performance on the SPECfp2000 metric. An interesting table was presented showing application scaling performance when using multi-cores on a chip. In general they scaled reasonably well, although there were a few notable exceptions. One major bottleneck identified was the bandwidth imbalance from L2 to L3 memory, where the transfer rate was for one core, but had to deal with bandwidth requirements of two cores.

Christine Kitchen, of Daresbury Laboratory, focused on the benchmark and procurement support they provide to the academic community for purchasing commodity-based cluster systems affordable by academic departments. Attention focused on the core-benchmark suite provided by Daresbury in support of the on-going SRIF-3 exercise (Scientific Research Investment Fund). With an estimated total expenditure of some £38M on HPC systems, this coordinated procurement is dominating the changing cluster landscape across the UK University sector. Note that this procurement process is coordinated by Tony Newjem of Heriot-Watt University, who also presented at the workshop. Expanding on the results shown by Martyn Guest to include higher processor counts, Christine presented benchmarking statistics derived from some 25 systems of clusters reported by the SRIF-3 framework suppliers. These results reinforced the uncertainty of Gigabit Ethernet as the interconnect of choice, as discussed in the associated workshop break out session, while pointing to the wide range of technical competence and benchmarking prowess within the framework suppliers. Christine emphasised the difficulties in providing a comprehensive overview of all the results given the wide range of requirements that characterised the participating Universities in SRIF-3.

Daresbury's findings suggest that the impact of dual-core technologies on cluster performance is strongly dependent on application –- from negligible impact on molecular simulation codes such as DL-POLY to dramatic performance degradation on DNS engineering codes such as PDNS3D and ANGUS. Averaging across all the applications under consideration leads to the Opteron2218-F/2600 dual-core cluster with Infinipath interconnect delivering, on average, 72 percent of the HP SD64000B Superdome (Itanium2 9050 1.6GHz), and the Intel Xeon 5160 “Woodcrest” dual-core cluster with Infiniband delivering 82 percent of the HP SD64000B. Given the complexity of the chips and uncertainty of metrics, the difference in performance between these leading solutions from Intel and AMD was too close to call.

There are many qualifiers to be considered, not least of which was the nature of the parallel application in question. For example, the replicated data approach of DL-POLY-2 was fine for a small cluster of 32 processors, but a disaster for a 1,000-processor system given that global communication traffic was a killer at this level of processor utilisation. Finally, it should be stressed that the results given were not normalised on price/performance, so no specific value-for-money comparisons were made or implied.

The rest of the workshop consisted of presentations from vendors, with a strong contingent of users sharing their experience in installing clusters, and presentations from a number of companies specialising in providing tailored system solutions from commodity components on demand. Instead of buying pre-packaged products from traditional vendors, a contract is placed with a small computer integration company (e.g., ClusterVision, Streamline) to build a cluster from favoured chips and an interconnect network such as Gigabit Ethernet, InfiniBand or Myrinet. These systems vary in size with a few attaining Top500 status. For example the University of Cambridge cluster, built by ClusterVision, was number 20 in the November 2006 Top500 list.

There are some very positive trends in multi-core chip developments, but the workshop also had some surprises. These are too sensitive to be printed here. For those of you keen to add the latest 'gismos' to your facilities, remember the Latin adage: “caveat emptor”.

As the season of goodwill is upon us: Wishing you all, Seasons Greetings and a Peaceful Happy New Year, 2007.

—–

Copyright (c) Christopher Lazou, HiPerCom Consultants, Ltd., UK. December 2006. Brands and names are the property of their respective owners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This