IT Revolution Just an Einstein Away

By Michael Feldman

December 15, 2006

Last week I talked about some of the problems with our current and future IT workforce. To summarize: there is a growing structural imbalance between the demand for information technologists and supply. Rapid growth in IT, especially in the U.S., has caused companies to outsource a large share of IT jobs, as well as take advantage of the increasingly controversial H1-B program to import extra workers. Notwithstanding the upheaval this has caused in the domestic IT job market in the last five years, it will provide only a temporary fix as cheaper workers are consumed and salaries are equalized globally.

Some companies have developed educational partnerships and sponsorships to develop new talent, but for reasons that I outlined last week, this will provide only limited results. If information technology is to live up to its potential, the industry will have to figure out a better way to develop and use the available workers.

Last week I also talked about the inherent limits on the number of people who would be suitable for IT work. Short of genetic engineering, there's not a lot to be done here. But there is at least one other facet of the problem that we can do something about. It involves how information technology advancements outpace the ability of the workforce to adapt to them.

The rapid advancement of technologies is especially stressful to older, more experienced IT professionals, since it tends to obsolete their skill sets. For example, developers who have worked for years in C/Unix/RISC shops find employers are reluctant to hire them for Java/Linux/x86 work. And regrettably, employer-provided training or retraining is almost non-existent in the industry. Part of this comes from management's view of IT workers as technicians rather than engineers and the feeling that younger or foreign-born talent will be cheaper. The unfortunate side effect of this kind of treatment is that it discourages new talent from entering the field. Employer-provided training and a little more professional respect would go a long way to keep the current supply of IT workers productive.

Then there's the problem of IT workers being consumed by what I'll call unproductive work. An example of this is software porting. It's a problem that is continually being (re)solved as developers lug legacy codes from platform to platform. Although this is a necessary task, I would suggest that it's not the best use of our limited workforce. These individuals would be better employed developing new application software, or at least enhancing current codes.

The Itanium experience is a poster child for this type of activity. The new processor architecture needed an entire software ecosystem and application domain to be transferred from older technologies. Consider the time, money and other resources Intel, HP and others have invested in making the Itanium processor a viable product in the market. Just this year, the Itanium Solutions Alliance infused $10 billion to do just that.

One way to reduce the human costs of porting software would be to develop emulation technology for the new platforms. Some of these technologies exist today and are in use. QuickTransit (Transitive Corp.) allows code compiled for one processor architecture/operating system to run on a system with a different processor architecture/operating system without source code or binary changes. In fact, one of the QuickTransit implementations dynamically translates Solaris/SPARC apps to Linux/Itanium ones. Supposedly the translation retains up to 80 percent of its native performance. But even if it were much less efficient, the translated code might still outperform the same code that is run on the older architecture. Emulation represents a valuable technology to offload a lot of tedious work from software developers.

Rapid technology advancement also manifests itself in another way that challenges the IT workforce. Hardware performance and capacity is increasing much faster than our ability to develop software to take advantage of it. This requires a constant effort by developers to find new ways to exploit overachieving processors, growing memories, and speedier networks. Perhaps even more challenging, the paradigm shift to parallel processing that is being propelled by multi-core and multi-processor architectures is creating additional difficulties for our current crop of software developers.

Even cyber-optimist Ray Kurzweil admits that software is currently running behind hardware. He estimates that software development productivity is doubling every six years, while hardware price/performance is doubling ever year.

In the past, the answer to the dichotomy between hardware performance and programmer productivity has been to raise software abstraction, that is, to encapsulate code complexity in higher level structures. I suspect that this is still the best overall strategy. The speed of microprocessor advancements suggests that we should be much more aggressive in trading application performance for developer efficiency. FLOPS, while not free, are cheap and getting cheaper. Software developers (yes, even the ones writing code in Bangalore, India) are relatively expensive.

But since we moved from assembly code to high-level languages over 50 years ago (Fortran), no other general-purpose programming model has emerged to significantly increase software abstraction. Maybe that's not fair. There certainly have been a number of refinements that have contributed to better productivity: modularization via libraries, object-oriented design and generic programming. These were incorporated into a number of 3rd generation high-level languages like C++, Java and Python. Python, in particular, was designed to emphasize the importance of programmer productivity over code performance.

A number of domain-specific languages (DSL), such as SQL, XML and Mathematica, have become popular in their various disciplines. DSLs trade off general-purpose expressiveness with simplicity, thereby raising the level of abstraction. This type of specialization it likely to increase in the future, since DSLs can open up application development to non-IT professionals.

Not everyone agrees that raising the level of abstraction is a good thing. Some users, especially those with supercomputing applications, tend to be performance junkies. But in the latest issue of CTWatch Quarterly two articles, “What's Working in HPC: Investigating HPC User Behavior and Productivity,” and “Observations about Software Development for High End Computing,” came to somewhat different conclusions regarding the importance of code performance versus code development. Even for the HPC crowd, the tradeoff between productivity and performance is not always obvious.

Others, though, are just philosophically opposed to the whole idea of simplifying the coding process. In a recent Technology Review interview, Bjarne Stroustrup, inventor of C++, raised doubts about using simpler programming languages in order to allow broader participation. Here's what he had to say on the subject:

“I think that would be misguided. The idea of programming as a semiskilled task, practiced by people with a few months' training, is dangerous…. Obviously, we don't want our tools — including our programming languages — to be more complex than necessary. But one aim should be to make tools that will serve skilled professionals — not to lower the level of expressiveness to serve people who can hardly understand the problems, let alone express solutions. We can and do build tools that make simple tasks simple for more people, but let's not let most people loose on the infrastructure of our technical civilization or force the professionals to use only tools designed for amateurs.”

Damn, that seems a tad cynical. It also seems to reflect the attitude that complex applications necessitate complex tools. But how can that be true? Consider the relative simplicity of DNA. Using a language based on just a few nucleotide base pairs, DNA is able to encode extremely complex living organisms (like for example, Bjarne Stroustrup). Even programming languages themselves are usually much less complex than the applications derived from them.

And while software abstraction can reduce performance, there is a way for software to fight back. Dramatic improvements in the speed of applications can be achieved through algorithm acceleration. For example, the radix-2 Cooley-Tukey algorithm increased the efficiency of the Fast Fourier Transform (FFT) by a couple orders of magnitude. Improving algorithms can provide what Georgia Tech's Mark Richards and MIT's Gary Shaw refer to as “worm-holes in development time,” achieving the equivalent of years of hardware advances with a single change to a piece of code.

Bernard Chazelle, professor of computer science at Princeton University, is another algorithm evangelist. Chazelle thinks that computer science, while currently in the doldrums, is actually on the cusp of a great revolution. According to him, what the field really needs a visionary — someone who could galvanize the public's imagination and express the importance of computer science for our future.

Says Chazelle: “I think that computer science bears an uncanny resemblance to pre-Einstein physics. Moore's Law … put computing on the map. But algorithms are going to unleash computing's true potential. I predict that there will be an Einstein of computer scientists. The revolution is yet to come.”

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This