SiCortex Marches to A Different Drummer

By Nicole Hemsoth

December 15, 2006

Last month at SC06, SiCortex, Inc. introduced its family of ultra low power high performance Linux systems, based on MIPS processor technology. Selected as one of five “HPC Companies to Watch in 2007” by HPCwire, SiCortex has developed a unique system architecture that it says represents a “sea change in cluster computing.”

In this Q&A, the company's co-founders, John Mucci (CEO) and Jud Leonard (CTO), talk about the novel design of the SiCortex systems, how the design overcomes the limitations of conventional clusters, and how their offerings will fit into the HPC market.

HPCwire: How do you view the HPC landscape today?

Mucci: It is a very exciting time in high performance computing. At the very highest end, DARPA is accelerating the pace at which the very biggest systems are able to do new science. In the volume part of the market, clusters have spawned a stable Linux/MPI software model that means that existing codes are portable in ways they never were before.

And yet…

The number of organizations that are actually benefitting from HPC techniques of simulation is quite small compared to the number that could be benefitting. Proctor & Gamble has become a poster child for what happens when a previously HPC-phobic organization makes the transition. SiCortex started by asking:

“Given that the need for HPC is ubiquitous, why isn't HPC itself ubiquitous?”

As the President's Information Technology Advisory Committee has pointed out, many of the obstacles are operational: “the most serious technical problems in computational science lie in software, usability, and trained personnel.” Mainstream users need a powerful but stable, compatible, and cost-effective solution. It needs to be powerful because these users cannot get bogged down in speed-hacking. It needs to be stable so they do not need a staff of sys admins just to keep the system up. It needs to be cost-effective to fit in existing budgets.

But most of all it needs to be software compatible so existing software just compiles, links and runs.

Just how powerful, stable, and cost-effective does it need to be? SiCortex research showed that ubiquity will require a teraflops or so of sustained applications performance, a single-vendor solution with a MTBF of a month or more, and a price — purchase and three-year operation — below $2 million. It was clear that conventional cluster thinking was standing in the way of these goals. SiCortex needed to take a very different path.

HCPwire: There are a lot of HPC cluster solutions already out there. What are the main problems with the existing solutions and how did SiCortex go about addressing them?

Mucci: First-generation clusters have unacceptably low sustained applications performance and unacceptably high cost of operation. A key SiCortex insight is that heat (i.e. power) plays a major role in both of these problems. Get the heat out and a whole virtuous circle of benefits unfolds.

For example, first generation clusters, with their hundred-plus watt processor chips, have to be spread out across multiple cabinets in order to dissipate all the heat. As a result they have to use cable interconnects that are either very expensive (reducing the budget for processors by a third or more) or very slow (destroying sustained performance.)

Heat is also the enemy of reliability, driving up the cost of operating the system and the number of jobs lost to hardware failure. And at a dollar a watt a year, power is now 50 to 70 percent of hardware cost over three years.

The second key issue in sustained performance — unbalanced processor and memory performance– has also been addressed by SiCortex, as described below.

HPCwire: What are the main technological innovations encompassed in the SiCortex systems?

Leonard: SiCortex brings two fundamental innovations to the marketplace. The first is to reduce *all* of the computational elements of a cluster node — arithmetic, communications, error correction, and cache/memory management — onto a single piece of silicon. The second key innovation is to reduce the power consumption of those nodes to 10 watts — 15 watts with memory — so that thousands of processors can be packed onto a single reliable backplane.

The SiCortex clean-sheet-of-silicon approach in turn embeds two key innovations: the aggressive use of third party IP and the aggressive balancing of processor and memory performance. We have integrated circuitry designed and licensed by six different companies, each with unique expertise, thereby reducing our own design task by an order of magnitude. This ability to exploit and manage the new silicon IP ecosystem will be critical to *all* systems companies in the future, just as the ability to integrate at the box level was key to Dell's success in the 90s.

Silicon-level integration is also critical to our ability to match processor and memory performance. By designing our own cache and dual DDR-2 memory controllers, and matching them to a gaggle of one gigaflop processing cores, we are able to achieve, and utilize, more than ten terabytes of sustained memory bandwidth.

The SiCortex heat reduction innovations are what, in turn, enable a return to traditional single-cabinet backplane packaging. The SiCortex cabinet breathes easily, corrects its own errors on a routine basis, installs most anywhere, and runs existing Linux/MPI codes. It offers the most accessible teraflops on the planet; exactly what is needed to spread the benefits of HPC.

HPCwire: In some sense, your approach appears to resemble the IBM Blue Gene one, where a relatively low-power PowerPC is used as the basis for a highly dense, scalable, low power supercomputer. How would you compare the SiCortex approach with that of the IBM Blue Gene?

Mucci: SiCortex respects the way that IBM has brought a recognition of heat and power issues to the very high end of the HPC marketplace. They have not, however, carried it far enough to unlock the virtuous circle of architectural benefits that SiCortex is now enjoying. As a result, they are still spending a lot of design effort dealing with power and heat that should not be there in the first place.

SiCortex also has a different performance target. Blue Gene is focused on petaflops for the few; SiCortex is focused on teraflops for the many. By focusing on performance at any cost, IBM is joining those who are flirting with FPGAs, Cell chips, graphics processors, and other non-standard techniques. IBM itself has noted that “Blue Gene is a somewhat exotic machine.” Thus their successes to date, and there have been impressive ones, have been won at the expense of heroic porting and recoding efforts. SiCortex is committed to the baseline Linux/MPI standard. Codes will move onto and off of our machine very gracefully.

HPCwire: One of the big criticisms of commodity cluster systems is the large difference between peak performance and sustained performance on real applications? Do you have a sense of how well the SiCortex machines will perform with actual HPC workloads?

Leonard: As John mentioned, SiCortex expects the HPC market to really open up when a sustained teraflops or so of performance is routinely and inexpensively available. Our processor-memory architecture, our micro-programmable communications “DMA engine,” and our Kautz graph backplane interconnect with its half-terabyte of bisection bandwidth are all aimed explicitly at this target.

Our simulations give us confidence that we have a dramatically better solution. We know, however, that only a full-systems test will convince customers. So we are being very conservative until we have real measurements.

HPCwire: Your MIPS-based systems go against the trend for commodity x86-based HPC machines, with its enormous software ecosystem. How will your solution compete against the software momentum behind x86?

Mucci: As you suggest, an instruction set architecture needs to be supported by a much wider ecosystem than the HPC market itself can provide. x86 and Power are two such HPC architectures that piggy-back on the commercial pc market. MIPS has an equally unstoppable ecosystem, piggy-backing on the enormous embedded systems market. More than 250 million MIPS cores will ship this year alone. And in the HPC marketplace, one ecosystem dominates: the Linux/MPI ecosystem which we are riding.

The biology analogy gives further insight into why MIPS momentum is growing. Biologists speak of “exaptations” in contrast to “adaptations.” When the environment changes, all successful organisms start a process of adaptation. Now that HPC has hit a power and heat wall, for example, we can see the x86 and Power architectures working to adapt. The winners, however, are invariably those organisms that happen to already have the right stuff for some other reason. In biology-speak, they have an “exaptation”. Because it has been living in the very power-constrained environment of embedded computing, the MIPS instruction set already has the sub-watt power gene that is needed to thrive in HPC going forward. x86 and Power instruction sets may evolve down from hundreds of watts to dozens of watts, but they will never get to milliwatts. And dozens of watts is just too much to spend on a system's arithmetic.

HPCwire: Presumably buyers will pay some premium for your customized approach versus a x86 commodity cluster solution. What are the economic incentives for choosing SiCortex?

Mucci: SiCortex does not expect anyone to pay a premium. By integrating at the system level, we have taken out whole layers of cost. Visitors to our [SC06] booth recognized that fact immediately when they saw our board layout.

We will be less expensive both in purchase price and in operating cost.

HPCwire: Do you have any plans to scale up or scale down the SiCortex solutions to larger or smaller systems, respectively?

Mucci: We do.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energetic effort,” IBM Research wrote in a blog post. “Therefor Read more…

By Oliver Peckham

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight Gary Patton, GlobalFoundries’ CTO and R&D SVP as well a Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth required on some problems and D-Wave struck a deal with NEC to coll Read more…

By John Russell

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth require Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
DDN
DDN
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This