SiCortex Marches to A Different Drummer

By Nicole Hemsoth

December 15, 2006

Last month at SC06, SiCortex, Inc. introduced its family of ultra low power high performance Linux systems, based on MIPS processor technology. Selected as one of five “HPC Companies to Watch in 2007” by HPCwire, SiCortex has developed a unique system architecture that it says represents a “sea change in cluster computing.”

In this Q&A, the company's co-founders, John Mucci (CEO) and Jud Leonard (CTO), talk about the novel design of the SiCortex systems, how the design overcomes the limitations of conventional clusters, and how their offerings will fit into the HPC market.

HPCwire: How do you view the HPC landscape today?

Mucci: It is a very exciting time in high performance computing. At the very highest end, DARPA is accelerating the pace at which the very biggest systems are able to do new science. In the volume part of the market, clusters have spawned a stable Linux/MPI software model that means that existing codes are portable in ways they never were before.

And yet…

The number of organizations that are actually benefitting from HPC techniques of simulation is quite small compared to the number that could be benefitting. Proctor & Gamble has become a poster child for what happens when a previously HPC-phobic organization makes the transition. SiCortex started by asking:

“Given that the need for HPC is ubiquitous, why isn't HPC itself ubiquitous?”

As the President's Information Technology Advisory Committee has pointed out, many of the obstacles are operational: “the most serious technical problems in computational science lie in software, usability, and trained personnel.” Mainstream users need a powerful but stable, compatible, and cost-effective solution. It needs to be powerful because these users cannot get bogged down in speed-hacking. It needs to be stable so they do not need a staff of sys admins just to keep the system up. It needs to be cost-effective to fit in existing budgets.

But most of all it needs to be software compatible so existing software just compiles, links and runs.

Just how powerful, stable, and cost-effective does it need to be? SiCortex research showed that ubiquity will require a teraflops or so of sustained applications performance, a single-vendor solution with a MTBF of a month or more, and a price — purchase and three-year operation — below $2 million. It was clear that conventional cluster thinking was standing in the way of these goals. SiCortex needed to take a very different path.

HCPwire: There are a lot of HPC cluster solutions already out there. What are the main problems with the existing solutions and how did SiCortex go about addressing them?

Mucci: First-generation clusters have unacceptably low sustained applications performance and unacceptably high cost of operation. A key SiCortex insight is that heat (i.e. power) plays a major role in both of these problems. Get the heat out and a whole virtuous circle of benefits unfolds.

For example, first generation clusters, with their hundred-plus watt processor chips, have to be spread out across multiple cabinets in order to dissipate all the heat. As a result they have to use cable interconnects that are either very expensive (reducing the budget for processors by a third or more) or very slow (destroying sustained performance.)

Heat is also the enemy of reliability, driving up the cost of operating the system and the number of jobs lost to hardware failure. And at a dollar a watt a year, power is now 50 to 70 percent of hardware cost over three years.

The second key issue in sustained performance — unbalanced processor and memory performance– has also been addressed by SiCortex, as described below.

HPCwire: What are the main technological innovations encompassed in the SiCortex systems?

Leonard: SiCortex brings two fundamental innovations to the marketplace. The first is to reduce *all* of the computational elements of a cluster node — arithmetic, communications, error correction, and cache/memory management — onto a single piece of silicon. The second key innovation is to reduce the power consumption of those nodes to 10 watts — 15 watts with memory — so that thousands of processors can be packed onto a single reliable backplane.

The SiCortex clean-sheet-of-silicon approach in turn embeds two key innovations: the aggressive use of third party IP and the aggressive balancing of processor and memory performance. We have integrated circuitry designed and licensed by six different companies, each with unique expertise, thereby reducing our own design task by an order of magnitude. This ability to exploit and manage the new silicon IP ecosystem will be critical to *all* systems companies in the future, just as the ability to integrate at the box level was key to Dell's success in the 90s.

Silicon-level integration is also critical to our ability to match processor and memory performance. By designing our own cache and dual DDR-2 memory controllers, and matching them to a gaggle of one gigaflop processing cores, we are able to achieve, and utilize, more than ten terabytes of sustained memory bandwidth.

The SiCortex heat reduction innovations are what, in turn, enable a return to traditional single-cabinet backplane packaging. The SiCortex cabinet breathes easily, corrects its own errors on a routine basis, installs most anywhere, and runs existing Linux/MPI codes. It offers the most accessible teraflops on the planet; exactly what is needed to spread the benefits of HPC.

HPCwire: In some sense, your approach appears to resemble the IBM Blue Gene one, where a relatively low-power PowerPC is used as the basis for a highly dense, scalable, low power supercomputer. How would you compare the SiCortex approach with that of the IBM Blue Gene?

Mucci: SiCortex respects the way that IBM has brought a recognition of heat and power issues to the very high end of the HPC marketplace. They have not, however, carried it far enough to unlock the virtuous circle of architectural benefits that SiCortex is now enjoying. As a result, they are still spending a lot of design effort dealing with power and heat that should not be there in the first place.

SiCortex also has a different performance target. Blue Gene is focused on petaflops for the few; SiCortex is focused on teraflops for the many. By focusing on performance at any cost, IBM is joining those who are flirting with FPGAs, Cell chips, graphics processors, and other non-standard techniques. IBM itself has noted that “Blue Gene is a somewhat exotic machine.” Thus their successes to date, and there have been impressive ones, have been won at the expense of heroic porting and recoding efforts. SiCortex is committed to the baseline Linux/MPI standard. Codes will move onto and off of our machine very gracefully.

HPCwire: One of the big criticisms of commodity cluster systems is the large difference between peak performance and sustained performance on real applications? Do you have a sense of how well the SiCortex machines will perform with actual HPC workloads?

Leonard: As John mentioned, SiCortex expects the HPC market to really open up when a sustained teraflops or so of performance is routinely and inexpensively available. Our processor-memory architecture, our micro-programmable communications “DMA engine,” and our Kautz graph backplane interconnect with its half-terabyte of bisection bandwidth are all aimed explicitly at this target.

Our simulations give us confidence that we have a dramatically better solution. We know, however, that only a full-systems test will convince customers. So we are being very conservative until we have real measurements.

HPCwire: Your MIPS-based systems go against the trend for commodity x86-based HPC machines, with its enormous software ecosystem. How will your solution compete against the software momentum behind x86?

Mucci: As you suggest, an instruction set architecture needs to be supported by a much wider ecosystem than the HPC market itself can provide. x86 and Power are two such HPC architectures that piggy-back on the commercial pc market. MIPS has an equally unstoppable ecosystem, piggy-backing on the enormous embedded systems market. More than 250 million MIPS cores will ship this year alone. And in the HPC marketplace, one ecosystem dominates: the Linux/MPI ecosystem which we are riding.

The biology analogy gives further insight into why MIPS momentum is growing. Biologists speak of “exaptations” in contrast to “adaptations.” When the environment changes, all successful organisms start a process of adaptation. Now that HPC has hit a power and heat wall, for example, we can see the x86 and Power architectures working to adapt. The winners, however, are invariably those organisms that happen to already have the right stuff for some other reason. In biology-speak, they have an “exaptation”. Because it has been living in the very power-constrained environment of embedded computing, the MIPS instruction set already has the sub-watt power gene that is needed to thrive in HPC going forward. x86 and Power instruction sets may evolve down from hundreds of watts to dozens of watts, but they will never get to milliwatts. And dozens of watts is just too much to spend on a system's arithmetic.

HPCwire: Presumably buyers will pay some premium for your customized approach versus a x86 commodity cluster solution. What are the economic incentives for choosing SiCortex?

Mucci: SiCortex does not expect anyone to pay a premium. By integrating at the system level, we have taken out whole layers of cost. Visitors to our [SC06] booth recognized that fact immediately when they saw our board layout.

We will be less expensive both in purchase price and in operating cost.

HPCwire: Do you have any plans to scale up or scale down the SiCortex solutions to larger or smaller systems, respectively?

Mucci: We do.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respective Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This