The MareNostrum Universe

By Nicole Hemsoth

December 15, 2006

According to the Bible, the universe was created in about a week. Astrophysicists are currently building a virtual universe that will be completed in about four months, using 2048 processors of the MareNostrum supercomputer. Hosted by the Barcelona Supercomputing Center, this 10,240-processor IBM machine is able to perform more than 94 trillion operations per second. This unique facility, the largest in Europe and ironically located inside an old chapel, is the perfect place to compute the formation and evolution of a virtual replica of our own universe.

The latest generation of astronomical instruments has allowed astronomers to have a clear view of the universe at its infancy, based on the so-called “cosmic microwave background,” as well as a very detailed knowledge of the universe at present, in its fully adult, grown-up age. In order to fill the gap in between, and to prepare for the next generation of astronomical instruments, astrophysicists from all over Europe have gathered in Barcelona to run a single application that can compute the evolution of large scale structures in the universe.

Projected gas and dark matter densities in the simulated volume. Small scale, high-density clumps, in which galaxies form, are interconnected by large scale, low-density filaments. Source: http://www.projet-horizon.fr/.The MareNostrum galaxy formation project is a multidisciplinary collaboration between astrophysicists of France, Germany, Spain, Israel and USA, together with computer experts from IDRIS (Institut du Développement et des Ressources en Informatique Scientifique) and BSC (Barcelona Supercomputing Center). The application solves a very complex set of mathematical equations by translating them into sophisticated computational algorithms. These algorithms are based on state-of-the-art adaptive mesh refinement techniques and advanced programming technologies in order to optimize the timely execution of the same application on several thousands of processors in parallel.

The simulation is now computing the evolution of a patch of our universe — a cubic box of 150 millions light years on a side — with unprecedented accuracy. It requires roughly 10 billion computational elements to describe the different kinds of matter that are believed to compose each individual galaxy of our universe: dark matter, gas and stars. This requires the combined power of 2048 PowerPC 970 MP processors and up to 3.2 TB of RAM memory. Contrary to other large computational problems in which information can be split into independent tasks, and because of the non-local nature of the physical processes we are dealing with, all 2048 processors have to exchange large amounts of data very frequently. To support this type of processing, the application takes advantage of the high bandwidth and low latency Myrinet interconnect installed on the MareNostrum computer. A personal computer, provided it had enough memory to store all the data, would need around 114 years to do the same task.

In about four months, using almost one million CPU hours, several billions years of the history of the universe will be simulated. The simulation makes intensive use of the I/O sub-system. To allow such a huge simulation to run smoothly during weeks of computation and to get an optimal performance of the system, application tuning was required: the simulation package provides a restart mechanism that allowed for recovery and resumption of the computation. In this way, the application is able to deal with hardware failures without having to restart from the beginning. This mechanism requires around 30 TB of data to be written to save the application state. In order to minimize the Global File System contention, an optimized directory structure has been proposed, supporting a sustained “parallel write” performance of 1.6 Gbps. Other design aspects were taken into account in order to improve a massive “parallel read and broadcast” over the Myrinet network, in order to read and dispatch the initial condition data over all the processors.

As in computer-simulated movies, a large number of snapshots are stored in sequence in order to provide realistic animation. The total amount of scientific data generated will exceed 40 TB. This unique database will constitute a virtual universe that astrophysicists will explore in order to create mock observations and to shed light in the many different processes that gave birth to the galaxies, and in particular, our own Milky Way galaxy.

The first week of computation was performed last September, during which 34 snapshots were generated, producing more than 3 TB of data. During the entire week only two hours were lost because of a hardware failure. This was due to failure of a single compute node — out of the 2100 processors reserved for the run.

The MareNostrum virtual universe was evolved up to the age of 1.5 billion years. Astrophysicists believe that this is precisely the era of the formation for the first Milky Way-like galaxies. Researchers have detected roughly 50 such large objects, with more than 100,000 additional galaxies of smaller size in the simulated universe. They are currently analyzing their physical properties in the virtual catalogue, as well as preparing for the next rounds of computations that will be needed in order to complete the history of the virtual universe.

One of the most important issues of numerical modelling of complex physical phenomena is the accuracy of the results. Unfortunately, the researchers cannot compare the results from the numerical simulations with laboratory experiments, like in other areas of computational fluid dynamics. Instead, the reliability of the simulations can be assessed by comparing results from different numerical codes starting from the same initial conditions. In this regard, the researchers are also simulating the MareNostrum Universe with a totally different numerical approach, using more than two billion particles to represent the different fluid components. This simulation is part of a long-term project named The MareNostrum Numerical Cosmology Project (MNCP). Its aim is to use the capabilities of MareNostrum supercomputer to perform simulations of the universe with unprecedented resolution.

—–

Source: Barcelona Supercomputing Center, http://www.bsc.es/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This