Chicago-Indiana Network to Handle Massive Data Flow

By Nicole Hemsoth

January 5, 2007

Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an international network of computer centers, including one operated jointly by the University of Chicago and Indiana University. The first phase of the Chicago-Indiana center, formally known as the MidWest Tier 2 Center, is now up and running, crunching test data in preparation for the real thing.

The Chicago-Indiana system is one of five Tier-2 (regional) centers in the United States that will receive data from one of four massive detectors at the Large Hadron Collider at CERN, the European particle physics laboratory in Geneva, Switzerland. When the new instrument begins operating late next year, beams of protons will collide 40 million times a second. When each of those proton beams reaches full intensity, each collision will produce approximately 23 interactions between protons that will create various types of subatomic particles.

“Understanding what's interesting and useful to record from those interactions is quite a challenge, because there is far more information than one is able to record for leisurely analysis,” said James Pilcher, a Professor in Physics at the University of Chicago.

Frederick Luehring, a Senior Research Scientist at Indiana University, adds, “Even once the data is recorded, it will take years of careful sifting and sorting, which will require massive amounts of computing power to extract the final scientific results.”

Pilcher and Luehring are among the physicists at 158 institutions in 35 nations who will harness the unprecedented power of the new collider in the ATLAS (A Toroidal Large Hadron Collider Apparatus) experiment at CERN. One of their goals will be to look for the long-sought Higgs boson, the theoretical particle that endows all objects in the universe with mass. The energy needed to create the Higgs boson is thought to be well within the capabilities of the Large Hadron Collider, Pilcher said. “If we don't see it, there's going to be a great deal of consternation,” he said.

Another goal among physicists around the world is the search for evidence of supersymmetric particles, which could lead to the discovery of extra dimensions.

Physicists at Chicago and Indiana built components for the ATLAS particle detector with the search for the Higgs boson and supersymmetry in mind. The University of Chicago's Computation Institute, together with Indiana University's information technology services organization and Department of Physics, also collaborate on scientific grid computing projects that provide high-speed network computer power on demand, much the way a power grid provides electricity.

“In high-energy physics as in many disciplines, the computers and software used to analyze experimental data are now as vital to scientific success as the experimental apparatus that generate the data,” said Ian Foster, director of the Computation Institute and a pioneer of grid computing. “This new Tier-2 center emphasizes the strengths that we have developed within the Computation Institute in creating and applying innovative computational infrastructure.”

Luehring added, “Grid computing is the use of geographically distributed computing resources. Within ATLAS we have deliberately designed a tiered structure of computing resources spread throughout much of the world. All of these sites interconnect with each other using grid-computing techniques. In addition, grid-computing allows us to use other computing resources that are not fully dedicated to ATLAS or high-energy physics.”

Data from the ATLAS experiment will first flow to Tier-0, the main computational center at CERN. Tier-0 will then transmit the data to 11 Tier-1 centers worldwide, including Brookhaven National Laboratory on Long Island, N.Y. Brookhaven will, in turn, distribute portions of the CERN data to the various Tier-2 centers.

The Chicago-Indiana Tier-2 center will serve physicists from around the world, said Robert Gardner, Senior Research Associate in the Computation Institute and the project's principal investigator. “It's really driven not so much by where the physicists come from, but what their interests are,” Gardner said. “Physicists will be able to submit jobs to this distributed network of centers and not worry about which center that their job is actually going to run on, because the data for their task will already be there,” he said.

The Chicago-Indiana Tier 2 center is connected to a national computing infrastructure called the Open Science Grid, a national network dedicated to large-scale, computing-intensive research projects. “We run jobs from anyone who's participating in this Open Science Grid,” Gardner said, whether the research involves particle physics, biology or some other topic.

Sites connected to the Open Science Grid include Fermi National Accelerator Laboratory in Illinois. Fermilab also is a Tier-1 center of the Large Hadron Collider's Compact Muon Solenoid experiment. As of Jan.1, 2007, Fermilab will be operated for the Department of Energy by Fermi Research Alliance, which consists of the University of Chicago and Universities Research Association Inc.

The initial set of computer servers, data storage and networking equipment of the multi-year project has been deployed in the basement of the Research Institutes building at the University of Chicago and at the Indianapolis campus of Indiana University, both of which will serve ATLAS data over the Open Science Grid. The sites will expand in January to bring the computing power equivalent to 300 personal computers to the national infrastructure via wide-area connections that can transfer data at 10 gigabits per second, which is like exchanging the music stored on an iPod in a second or two.

Nevertheless, the Tier-2 managers at both institutions regard the center as a single entity. “If our users apply for an account, we go through a security protocol that meets the common requirements for both universities, nationally for the Open Science Grid and internationally for ATLAS, but we have them do that once. They don't have to do it twice,” Luehring said. And if a hardware problem arises at Chicago, an Indiana technician may address the problem, or vice versa. It's a philosophy inspired by the culture of high-energy physics that physicists enjoy at CERN.

The Chicago-Indiana Tier-2 center is funded by annual $600,000 grants from the National Science Foundation. The project also was made possible by previous investments from the states of Illinois and Indiana in I-WIRE (Illinois Wired/Wireless Infrastructure for Research and Education), and I-Light (Indiana's high-speed fiber optic network for higher education and research).

“They're common infrastructure projects for the research community in the United States,” Gardner said. “They're not necessarily for just one scientific purpose, but we're going to be early beneficiaries of these investments.”

—–

Source: University of Chicago; Indiana University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers in Neuroscience this month present IBM work using a mixed-si Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This