The x86 Dynasty

By Michael Feldman

January 5, 2007

The longevity of the x86 architecture is perhaps one of the most surprising achievements of the Information Age thus far. Nobody, probably not even its Intel inventors, envisioned the dominance it has attained in the industry. After more than 25 years, the lowly x86 rules the all-important desktop, laptop and server markets.

For the past decade the x86 has been swallowing the high performance computing market, paralleling the rise of cluster computing. In the enterprise market, RISC/Unix boxes have been giving way to x86/Linux machines. And finally, with last year's conversion of Apple from PowerPC to Intel, the last bastion of non-x86 personal computers was removed from the desktop. In fact, had IBM anticipated the critical importance of desktop platform earlier and been a little quicker on the trigger with the development of the PowerPC chip, the whole history of computing might have followed a very different path.

As it was, the “Wintel” platform attracted a substantial software base in the 1980s before any RISC competitors could mount a challenge. The early accumulation of software, especially compiler/runtime tools and system software, created the initial momentum which propelled the x86 forward. With the thousands of applications that now run on x86 platforms, the cost of losing binary compatibility would be overwhelming for many users. It represents the technological version of the rich-get-richer syndrome: The bigger your market share, the more developers will be attracted to your architecture, which results in yet more market share.

Which brings us to the question: Will the x86 architecture ever lose its dominance? And if so, how will this happen? In 2020 it's conceivable that we'll be using terascale processors (and exascale supercomputers) based on the x86 ISA and implemented on post-CMOS technology. The demise of the x86 has been predicted before, so I hesitate to write its epitaph here. But all technologies have a lifespan and there is reason to believe that the architecture might not survive the age of terascale processors.

One problem to confront is that we're running out of Moore's Law. Before non-silicon-based processor technology — compound semiconductors, carbon nanotubes, nanowires, molecular electronics, three-dimensional transistor designs and spintronics — is developed and commercialized, the physics of sub-32nm process technology will constrain the number of transistors that can be placed on a die. The general-purpose x86 architecture, with its relatively complex instruction set, has to drag around a lot of transistors and microcode that have only limited utility for many types of computing, including high performance computing.

There's reason to believe that some the problems of sub-32nm technology will actually be solved, but most analysts believe CMOS-based silicon devices will no longer be practical at some point between 2015 and 2020. When this happens, transistor space on the die will become such a limiting factor that more efficient processor architectures will have an enormous advantage.

But even before that occurs, Intel and AMD may have moved beyond their x86 heritage. The current limitations of power consumption and heat dissipation are causing chipmakers to not only explore multi-core designs, but alternative processing engines as well. While the engineers at Intel and AMD have been extremely clever at increasing performance/watt, the market demand seems to be outstripping their efforts.

With the acquisition of ATI, AMD seems to have its sights set on a hybrid CPU-GPU approach, which could theoretically evolve away from strict x86 compatibility. The addition of GPU cores to general-purpose processors may be part of a trend that portends greater processor heterogeneity — the Cell chip being an early example. As for the x86-only roadmap, AMD has not publicized any plans beyond an 8-core processor. Of course, the company would be expected to change direction if their major customers demanded a many-core x86 solution.

Intel, itself, has actually tried to move beyond the x86 twice before (not counting the i432 processor), once with the i860/i960 chips and more recently with the Itanium processor. The failure of the i860 and the (as yet) unrealized potential of the Itanium shows how even Intel can be a victim of its own success. In 2006, the company previewed a very non-x86 80-core prototype of a terascale processor, which it expects to commercialize by the middle of the next decade. Intel will be showing the next prototype of this processor at the upcoming International Solid-State Circuits Conference next month in San Francisco. According to Intel, “the 65nm 100-million transistor die is designed to achieve a peak performance of 1.0 teraflops at 1V while dissipating 98 watts.”

With its (Niagara) UltraSPARC T1 chip, Sun Microsystems has demonstrated that a simplified processor can achieve much greater throughput than a more general-purpose architecture. The TI processor provides up to eight 4-way multithreaded cores (32 threads), while consuming just 72 watts. The processor is low on floating-point horsepower, making it unsuitable for scientific computing, but the design is well suited for Web servers and a wide variety of enterprise applications.

In contrast, SiCortex, an HPC cluster startup, developed a non-x86 architecture expressly targeted for high performance technical computing. Its MIPS-based chip holds six 64-bit CPUs, cache, two interleaved memory controllers, the interconnect fabric links and switch, a DMA Engine, and a PCI Express interface. The simplicity of the MIPS architecture enables a tightly integrated solution and claims two orders of magnitude more performance/watt compared to a typical x86 system. Their 5.8-teraflop, 8-terabyte cluster is housed in a single cabinet and consumes just 20 kilowatts of power. The system relies on GNU and PathScale compilers for the MIPS target and open source Linux to insulate the applications from the non-standard hardware.

The SiCortex case is interesting in another respect. The MIPS CPU, like many RISC chips, was a high-end processor that got relegated to the embedded market when it couldn't compete as a workstation chip. The embedded market is much more diversified than the desktop, laptop and server markets. The latter community runs a relatively limited set of applications, while embedded applications are much more diverse and include devices such as PDAs, laser printers, set-top boxes, network switches, automobile diagnostic controllers, game machines, etc. The diversity is reflected in the diversity of processors: PowerPC, MIPS, ARM, 68K, SPARC, and even x86. Due to the dynamic nature of the market, no processor has maintained dominance for any length of time.

But as power, heat and space constraints become increasingly important in the non-embedded world, the simpler, embedded RISC processors are looking more attractive. The simpler processor architectures enable more aggressive multi-core and multi-threaded designs. This advantage is especially important for HPC applications, where parallel throughput is usually much more critical than single thread performance. IBM's use of the energy-efficient PowerPC processors in its Blue Gene supercomputers is a reflection of this strategy.

While the end of the x86 dynasty will not happen in 2007, some of the forces that could end its dominance are already in motion. In a decade or so we'll probably look back at this time and wonder how we could ever have been so dependent on a single architecture for so long. Its 30-year reign will be seen as an anomalous blip in the early history of computer technology.


As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., announced yesterday (July 6) a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascad Read more…

By Tiffany Trader

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Leading Solution Providers


10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This