The x86 Dynasty

By Michael Feldman

January 5, 2007

The longevity of the x86 architecture is perhaps one of the most surprising achievements of the Information Age thus far. Nobody, probably not even its Intel inventors, envisioned the dominance it has attained in the industry. After more than 25 years, the lowly x86 rules the all-important desktop, laptop and server markets.

For the past decade the x86 has been swallowing the high performance computing market, paralleling the rise of cluster computing. In the enterprise market, RISC/Unix boxes have been giving way to x86/Linux machines. And finally, with last year's conversion of Apple from PowerPC to Intel, the last bastion of non-x86 personal computers was removed from the desktop. In fact, had IBM anticipated the critical importance of desktop platform earlier and been a little quicker on the trigger with the development of the PowerPC chip, the whole history of computing might have followed a very different path.

As it was, the “Wintel” platform attracted a substantial software base in the 1980s before any RISC competitors could mount a challenge. The early accumulation of software, especially compiler/runtime tools and system software, created the initial momentum which propelled the x86 forward. With the thousands of applications that now run on x86 platforms, the cost of losing binary compatibility would be overwhelming for many users. It represents the technological version of the rich-get-richer syndrome: The bigger your market share, the more developers will be attracted to your architecture, which results in yet more market share.

Which brings us to the question: Will the x86 architecture ever lose its dominance? And if so, how will this happen? In 2020 it's conceivable that we'll be using terascale processors (and exascale supercomputers) based on the x86 ISA and implemented on post-CMOS technology. The demise of the x86 has been predicted before, so I hesitate to write its epitaph here. But all technologies have a lifespan and there is reason to believe that the architecture might not survive the age of terascale processors.

One problem to confront is that we're running out of Moore's Law. Before non-silicon-based processor technology — compound semiconductors, carbon nanotubes, nanowires, molecular electronics, three-dimensional transistor designs and spintronics — is developed and commercialized, the physics of sub-32nm process technology will constrain the number of transistors that can be placed on a die. The general-purpose x86 architecture, with its relatively complex instruction set, has to drag around a lot of transistors and microcode that have only limited utility for many types of computing, including high performance computing.

There's reason to believe that some the problems of sub-32nm technology will actually be solved, but most analysts believe CMOS-based silicon devices will no longer be practical at some point between 2015 and 2020. When this happens, transistor space on the die will become such a limiting factor that more efficient processor architectures will have an enormous advantage.

But even before that occurs, Intel and AMD may have moved beyond their x86 heritage. The current limitations of power consumption and heat dissipation are causing chipmakers to not only explore multi-core designs, but alternative processing engines as well. While the engineers at Intel and AMD have been extremely clever at increasing performance/watt, the market demand seems to be outstripping their efforts.

With the acquisition of ATI, AMD seems to have its sights set on a hybrid CPU-GPU approach, which could theoretically evolve away from strict x86 compatibility. The addition of GPU cores to general-purpose processors may be part of a trend that portends greater processor heterogeneity — the Cell chip being an early example. As for the x86-only roadmap, AMD has not publicized any plans beyond an 8-core processor. Of course, the company would be expected to change direction if their major customers demanded a many-core x86 solution.

Intel, itself, has actually tried to move beyond the x86 twice before (not counting the i432 processor), once with the i860/i960 chips and more recently with the Itanium processor. The failure of the i860 and the (as yet) unrealized potential of the Itanium shows how even Intel can be a victim of its own success. In 2006, the company previewed a very non-x86 80-core prototype of a terascale processor, which it expects to commercialize by the middle of the next decade. Intel will be showing the next prototype of this processor at the upcoming International Solid-State Circuits Conference next month in San Francisco. According to Intel, “the 65nm 100-million transistor die is designed to achieve a peak performance of 1.0 teraflops at 1V while dissipating 98 watts.”

With its (Niagara) UltraSPARC T1 chip, Sun Microsystems has demonstrated that a simplified processor can achieve much greater throughput than a more general-purpose architecture. The TI processor provides up to eight 4-way multithreaded cores (32 threads), while consuming just 72 watts. The processor is low on floating-point horsepower, making it unsuitable for scientific computing, but the design is well suited for Web servers and a wide variety of enterprise applications.

In contrast, SiCortex, an HPC cluster startup, developed a non-x86 architecture expressly targeted for high performance technical computing. Its MIPS-based chip holds six 64-bit CPUs, cache, two interleaved memory controllers, the interconnect fabric links and switch, a DMA Engine, and a PCI Express interface. The simplicity of the MIPS architecture enables a tightly integrated solution and claims two orders of magnitude more performance/watt compared to a typical x86 system. Their 5.8-teraflop, 8-terabyte cluster is housed in a single cabinet and consumes just 20 kilowatts of power. The system relies on GNU and PathScale compilers for the MIPS target and open source Linux to insulate the applications from the non-standard hardware.

The SiCortex case is interesting in another respect. The MIPS CPU, like many RISC chips, was a high-end processor that got relegated to the embedded market when it couldn't compete as a workstation chip. The embedded market is much more diversified than the desktop, laptop and server markets. The latter community runs a relatively limited set of applications, while embedded applications are much more diverse and include devices such as PDAs, laser printers, set-top boxes, network switches, automobile diagnostic controllers, game machines, etc. The diversity is reflected in the diversity of processors: PowerPC, MIPS, ARM, 68K, SPARC, and even x86. Due to the dynamic nature of the market, no processor has maintained dominance for any length of time.

But as power, heat and space constraints become increasingly important in the non-embedded world, the simpler, embedded RISC processors are looking more attractive. The simpler processor architectures enable more aggressive multi-core and multi-threaded designs. This advantage is especially important for HPC applications, where parallel throughput is usually much more critical than single thread performance. IBM's use of the energy-efficient PowerPC processors in its Blue Gene supercomputers is a reflection of this strategy.

While the end of the x86 dynasty will not happen in 2007, some of the forces that could end its dominance are already in motion. In a decade or so we'll probably look back at this time and wonder how we could ever have been so dependent on a single architecture for so long. Its 30-year reign will be seen as an anomalous blip in the early history of computer technology.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This