FPGA Floating Point Performance

By Dave Strenski

January 12, 2007

HPC programmers are evaluating alternative accelerators to boost the performance of their applications. When looking at FPGAs, they are confronted with an array of new terminologies and concepts that can be difficult to understand at first. This article will walk the HPC programmer through understanding double precision (64-bit) floating-point performance of Xilinx Virtex-4 LX200 and Virtex-5 LX330 FPGAs and compares them to the performance of a 2.5 GHz, dual-core Opteron processor.

The FPGA (Field Programmable Gate Array) can be thought of as a reconfigurable co-processor. The chip consists of an array of Look Up Tables (LUT), Flip-Flops (FF), and Digital Signal Processing (DSP) blocks that all can be reprogrammed on the order of milliseconds. To use FPGAs to accelerate an application, the programmer must first implement a design for the chip. The microprocessor can then call the FPGA loaded with this design to accelerate the application.

The easiest example to envision is an application that uses matrix multiply during its calculation. For the best performance, the programmer would call a highly tuned vendor supplied math library like DGEMM, and pass pointers of the matrices being multiplied. In the ideal FPGA situation, the programmer would call a vendor supplied routine called FPGA_DGEMM and pass the same pointers. In the first case, the DGEMM function would be performed on the microprocessor, reading and writing to the microprocessor’s memory. In the second case, the microprocessor would initiate a Direct Memory Access (DMA) transfer, and move the data to memory associated with the attached FPGA, or directly to the memory located within the FPGA. The results would then be calculated using the logic on the FPGA and returned to the microprocessor’s memory.

Obviously the transfer times between the microprocessor and the FPGA can greatly affect the performance, but for our microprocessor comparison consider the FPGA’s capabilities itself. When a microprocessor’s peak performance is quoted, it is usually calculated by the number of 64-bit floating-point operations it can perform per clock, multiplied by the clock frequency of the chip. In the new world of multi-core processors, this calculation has been expanded by multiplying that result by the number of cores on the chip. So a 2.5 GHz dual-core Opteron, which can perform one add and one multiply per clock, has a peak of (2.5 x 2 x 2) = 10 Gflop/s. An FPGA has neither floating-point adders nor multipliers, only generic logic that can be configured any way the user would like. So to get an equivalent type of 64-bit floating-point performance, we need to figure out how many add and multiply function units will fit on an FPGA and at what clock frequency that design might run.

Doing the Calculations

To start this pencil and paper calculation, we need three reference documents from Xilinx: “Virtex-4 Family Overview” (DS112 v1.6), “Virtex-5 Family Overview LX and LXT Platforms” (DS100 v2.1), and “Floating-Point Operator v3.0” (DS 335), all of which are available at http://www.xilinx.com/. Using the first two documents we can find out how many resources are available on the Virtex-4 LX200 and the Virtex-5 LX330 FPGAs. The last document will tell us how many resources are needed to implement 64-bit multiply, add, divide, square root and other functions, and at what clock frequency those function units will run. Dividing the resources needed per function unit into the resources available on the FPGA will tell how many function units will fit on the chip. Multiplying this by the clock frequency of the function units gives us a peak performance for the FPGA, similar to the peak for the Opteron. Here is a table summarizing the resources available on the LX200, LX330 and other Virtex FPGAs.

——– —– ——  ——  ————- ———–
Virtex-4 Speed Logic   DSP48   Block RAM     Total
         MHz   slices  slices  18-bit/36-bit Kbits (MB)
——– —– ——  ——  ————- ———–
LX160    500   67,584  96      288/0         5,185 (0.6)
LX200    500   89,088  96      336/0         6,048 (0.7)
——– —– ——  ——  ————- ———–
Virtex-5 Speed Logic   DSP48E  Block RAM     Total
         MHz   slices  slices  18-bit/36-bit Kbits (MB)
——– —– ——  ——  ————- ———–
LX220    550   34,560  128     384/192        6,912 (0.8)
LX330    550   51,840  192     576/288       10,368 (1.3)

The Virtex-4 LX200 is listed as having 89,088 logic slices and 96 DSP48 slices, and the Virtex-5 LX330 is listed as having 51,840 logic slices and 192 DSP48E slices. Reading the footnotes in those reference documents shows that a Virtex-4 logic slice contains 2 LUTs and 2 FFs whereas the Virtex-5 logic slice contains 4 LUTs and 4 FFs. Similarly, the Virtex-4 DSP48 slices have 18 x 18 bit hardware multiplier/accumulators whereas the Virtex-5 DSP48E slices have 18 x 25 bit hardware multiplier/accumulators.

Before calculating the number of function units that will fit on an FPGA, we need to subtract some portion of the logic slices for the I/O interface. Remember that an FPGA is generic logic, it does not know how to talk to the microprocessor until you implement and load an interface. For the purposes of these calculations we will assume that we need 13,500 slices on the LX200 and 6,750 slices on the LX330. This leaves the LX200 with 75,588 and the LX330 with 44,790 logic slices available for function units.

The other limiting factor for the number of function units that can be placed on an FPGA is the total amount of on-chip memory available for building 64-bit registers that the function units can read and write. The LX200 has only 18-bit dual-port block RAMs and the LX330 has a combination of 18-bit and 36-bit dual-port block RAMs. Dual-ported means the block RAM can read (or write) two values every clock cycle. Grouping these into 64-bit registers we can make  ((336*2)/4) = 168 registers on the LX200 and ((576*2)/4 + (288*2/2)) = 576 registers on the LX330. Assume we will need at most two registers for each function unit since many of them will be chained or pipelined together with one feeding the next. So the upper bound on function units is (168/2) = 84 for the LX200, and (576/2) = 288 for the LX330.

The “Floating-Point Operators” reference shows that we can build 64-bit multipliers three different ways with the full implementation yielding the highest function unit density, so that is what is used in these calculations. We will first implement as many function units as possible using the DSP slices, then fill up the rest of the FPGA with function units built out of only logic slices. This technique will yield the maximum number of function units, but they will all have to run at the slower all-logic clock frequency. The table below uses the expression (dsp+logic):reg to show how many of the function units were built with a combination of DSP and logic slices, and how many are implemented with logic slices alone. The last number in the expression compares that sum against the upper bound imposed by the number of available 64-bit registers made from on-chip memory. The peak Gops/s value is the minimum of these two numbers multiplied by the minimum of the two clock frequencies shown in the next column.

——–  —— —– —– ——  —————  ——— ——
Function  DSP48  LUTs  FFs   Logic    Virtex-4        Freq      Peak
64-bit    slices             slices   LX200           MHz       Gops/s
                                     (dsp+logic):reg  dsp:logic
——–  —— —– —– ——  —————  ——— ——
Multiply  16     550   774   387     (6+59):84        303:185   12.0
Multiply  0      2311  2457  1229        61:84          185     11.3
Adder     0      1274  1139  637        118:84          284     23.9
——–  —— —– —– ——  —————  ——— ——
Function  DSP48E LUTs  FFs   Logic    Virtex-5        Freq      Peak
64-bit    slices             slices   LX330           MHz       Gops/s
                                     (dsp+logic):reg  dsp:logic
——–  —— —– —– ——  —————  ——— ——
Multiply  12     424   669   168     (16+68):288      369:237   19.9
Multiply  0      2309  2457  615          73:288        237     17.3
Adder     0      804   1060  265         170:288        316     53.7

We need to consider one more adjustment to these results before we can compare them to the dual-core 2.5 GHz Opteron. The results above assume there are only multipliers or adders on the chip, not both. If both multipliers and adders are in the same design, we need to make sure we have enough DSP slices for both, and run the mixed design at the slower of the two clock frequencies. After several iterations, the optimal mixed mult/add implementation for the LX200 is 43 multipliers and 43 adders running at a clock frequency of 185 MHz. This design implements 6 multipliers using the DSP full design, 37 multipliers in all logic and 43 adders in logic. For the LX330 the optimal mixed design is 59 multipliers and 59 adders running at 237 MHz. Again using the DSP full implementation for 16 of the multipliers, 43 multipliers in logic slices, and 59 adders in logic. Multiplying that out, the LX200 gets (43+43)*185 = 15.9 Gflop/s and the LX330 gets (59+59)*237 = 28.0 Gflop/s.

              ———   ———   ———
              Opteron     Virtex-4    Virtex-5
              Dual-core   LX200       LX330
              2.5 GHz     185 MHz     237 MHz
              (Gflop/s)  (Gflop/s)   (Gflop/s)
              ———   ———   ———
Mult/Add         10         15.9        28.0
Mult only        5          12.0        19.9
Add only         5          23.9        55.3

Practical Considerations

In terms of market availability, the LX200 and dual-core Opteron are both readily available and can be purchased today. The LX330 is available now, but in very limited numbers, becoming more available towards the end of 2007, so the analysis should be performed again comparing the LX330 with the quad-core Opterons.

Another consideration is the percent of peak that can be obtained. With more flexibility in the FPGA architecture the programmer should be able to achieve a much high percentage of peak on typical code; whereas the more cores that are placed on a multi-core microprocessor the percent or peak continues to fall. One can actually think of an FPGA as a dense multi-core processor with a very fast crossbar connecting all the function units and registers.

Power consumption is another consideration that is getting more important these days. The dual-core Opteron is rated as requiring 95 watts. The pathological worst case power rating for the LX200 in a current system is 42 watts. A more realistic power rating for this design would be about 25 watts on the LX200, with the LX330 being somewhat higher. So the FPGA designs would use about half to one quarter of the power of the Opteron. Considering the lifetime cost of a system, this reduced power consumption would lower the machines operating costs for both electricity and cooling capacity.

A more aggressive design might also consider using a lower precision calculation. 32-bit function units take about a quarter of the real estate as 64-bit floating-point function units, and the on-chip memory would hold twice as many 32-bit registers as 64-bit registers. Since FPGAs are completely programmable, one could use any bit width or numerical representation needed.

Converting from floating-point to fixed-point or integer would greatly benefit the FPGA’s performance.

This pencil and paper exercise shows that FPGAs can be competitive compared to standard microprocessors at 64-bit floating-point operations. Naturally many details have been left out, such as the speed of the interface between the microprocessor and the FPGA, the amount of additional logic needed to implement a given design, and the larger issue pertaining to the amount of programming effort it takes to implement an efficient design on the FPGA. Nevertheless, this article should provide the motivation for programmers to start leaning how to program these accelerators. Programmers who want to experiment with a HyperTransport attached FPGA architecture may wish to look at the Cray XD1 supercomputer with a Virtex-4 LX160 attached per node (www.cray.com/products/xd1/acceleration.html), or the DRC Development System 2000 from DRC Computer Corporation with one or more attached Virtex-4 LX200 (www.drccomputer.com/pdfs/DRC_DS2000_datasheet.pdf).


Dave Strenski is an applications analyst for Cray Inc., which designs and manufactures high performance computing systems. Prior to Cray, Dave held a variety of technical positions at several computer and research organizations. He holds degrees in Land Surveying, Civil and Mechanical Engineering. His publications include works in the areas of parallel computing, numerical consistency, genomic data searching algorithms, and field programmable gate arrays. He also holds a patent on a meshing algorithm for threaded fasteners. As a hobby, Dave plays with solar power.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This