Getting Serious About Transactional Memory

By Michael Feldman

January 12, 2007

The parallelization of computing, via multi-threading cores, multi-core processors and multi-processor systems is encouraging ever greater levels of application concurrency to take advantage of the proliferating CPUs. Multi-core processors, in particular, are fueling this phenomenon.

Beyond the dual- or quad-core domain, manufacturers are starting to build many-core chips. Examples include the Niagara T1 UltraSPARC from Sun Microsystems, which has 8 cores and can support 32 threads (the next-generation Rock processor will double this to 16 cores and 64 threads); Cavium Networks 16-core OCTEON MIPS64 processor for embedded applications; and Intel's Polaris prototype processor, which sports 80 cores and boasts a peak teraflop.

The Polaris prototype, which is part of Intel's terascale computing initiative, is motivating researchers there to take a hard look at a relatively new technology — transactional memory or TM, for short. Within the next ten years, the prospect of multi-core teraflop processors like Polaris and new application domains to use those processors will require vastly more parallel processing than ever before. Even incorporating relatively low levels of concurrency in today's applications is already challenging some of our best developers.

One of the nastiest concurrency problems has to do with keeping data thread-safe, that is maintaining global data integrity in the presence of parallel executing threads. Failure to keep data thread-safe leads to deadlocks, race conditions (data corruption) and priority inversion. Worse, because these types of problems are time-sensitive, they are often very hard to find during normal testing and in some cases go undetected until after the application is deployed.

The typical way to keep data thread-safe is to use global locks around objects that are being accessed by more than one thread. Locks provide a synchronization mechanism that blocks concurrent access of an object, preventing the data race condition. Seems simple enough. But there are a number of problems with this approach. Sometimes locks become dependent on each other, such that each thread is holding a lock the other thread needs. Or if a thread dies holding a lock it can block other dependent threads.

Even for correctly implemented locks, there's the issue of granularity. Coarse granularity protects larger data objects and uses fewer locks. But as the number of threads scales up, performance suffers. Finer granularity allows the programmer to protect smaller data items and gives better performance as long (as lock overhead is not overwhelming). It makes it possible, for example, to lock individual record components rather than the entire record structure. But finer granularity requires more complex algorithms and more locks, so it is often much more difficult to implement correctly.

Transactional memory to the rescue

Terascale computing, which relies on many-core parallelism, will be very difficult to develop. The current languages only provide low-level concurrency features. For Intel, terascale computing has become the prime motivator to improve software concurrency technology. The company's 80-core Polaris prototype will require much greater levels of application concurrency than today. And the scaling up of multi-core processors across time and product families will necessitate a solution that doesn't require reprogramming based on core count.

“How can the programmer write parallel code more effectively, that is, write robust code that doesn't have bugs, but still scales and benefits from the additional cores that each successive generation provides,” asks Ali-Reza Adl-Tabatabai, Intel Principal Engineer? “That's the big challenge that we're going after.”

To that end, Intel researchers are looking to transactional memory as one of the key technologies that will enable developers to write the terascale killer apps of the next decade. The attraction of TM is that is appears to solve the most annoying problems of global locks: application robustness and scalability. These attributes are especially important for the type of large-scale concurrency required by terascale applications.

Like locks, transactional memory is a construct for concurrency control that enables access to data shared by multiple threads. But unlike locks it is an optimistic model. It assumes that in most cases only a single thread will be contending for a given data item. A transaction is a high-level construct that executes reads and writes to data as an indivisible operation. From the application's point of view intermediate states are not visible to other successful transactions. So when a logical transaction is complete, the system verifies that other logical transactions haven't made changes to the same memory that would conflict with the first transaction. If they have, then the transaction is re-executed until it succeeds.

Intel's view is that TM should be encapsulated in language construct, and initially implemented in software. At some point, it may be useful to provide a hardware assist to provide better performance or functionality. But this is not necessarily the case.

Adl-Tabatabai says that dynamic memory garbage collection, a technology introduced about 50 years ago, may be a good analogy of how transactional memory will evolve. Initially, there were a number of techniques for implementing garbage collection in software. People thought that they really would like hardware support for this. But the software algorithms evolved and eventually made it into mainstream languages like Java. It turned out that hardware assistance wasn't really needed. In any case, once the language semantics of TM are defined, the software/hardware implementation should be transparent to the application developer.

Intel researchers have prototyped extensions to Java and C that incorporate transactional memory constructs. They've also investigated using various compiler optimizations for transactional memory implementations. Below are two trivial code examples that make data object 'x' thread-safe. The first uses explicit locking, the second uses the atomic block construct for transactional memory.

   lock(L); x++; unlock(L);

   atomic {x++;}

The atomic construct guarantees the enclosed operations will be safe from thread concurrency. The data transactions within the construct will either execute completely or have no effect until it is safe to do so. When the atomic block executes this happens as if in a single step in relation to the other threads. In other words, from the programmer's point of view, the transactions run in isolation.

The DARPA HPCS research languages (Fortress, X10, Chapel) for high productivity computing all provide atomic block construct in lieu of explicit lock synchronization. A few other investigators have incorporated TM into other research languages, but the final language to emerge from the DARPA HPCS program may be the first one to formally introduce it as a standard feature.

“The fact that the HPCS languages decided to provide atomic constructs rather than locking constructs shows that there's general consensus in the language design community that this is the way to go for concurrency control in future languages,” notes Adl-Tabatabai.

According to Adl-Tabatabai, The HPCS language effort represents a real step forward, since it will incorporate TM from the beginning. Retrofitting transactions into older languages that previously used locks can be problematic, since mixing explicit locking and implicit locking via a low-level implementation of TM may introduce conflicts when dealing with legacy code.

Scaling to advantage

On many applications, coarse-grained locking — putting locks around whole data structures — doesn't scale well. Threads that are concurrently accessing the same data structure must wait unnecessarily when they are reading or writing disjoint data within the structure. To increase performance, the developer must re-program the algorithm using fine-grained locking — putting global locks around individual data items in the data structures. Fine-grained locking allows different threads to concurrently access disjoint data in the same data structures. Transactional memory implicitly provides fine-grained locking, automatically providing the associated performance benefits.

Adl-Tabatabai describes an example using traditional fine-grained locking for a hash table. Using the Java 5 class libraries, a professor of computer science (who wrote a book on Java concurrency) was able to make the appropriate modifications to the hash table algorithms to incorporate fine-grained locking. The changes were subtle, yet quite complex. After two years of reviews by the Java standards committees, it was approved for inclusion into the Java class libraries.

“In general, doing this kind of coding is very difficult,” says Adl-Tabatabai. “You're not going to be able to get your average Joe Programmer to write code like this, and write it in a way that's error-free and doesn't introduce data races or deadlocks.”

Besides fine-grained locking, TM has the additional advantage of allowing for concurrent reads of the same data, which traditional locks cannot do. A special type of lock, called a reader-writer lock can be used to overcome this deficiency but this requires application code modifications. Transactional memory, on the other hand provides a systematic way for programmers to take advantage of these features.

With no existing base of software, how will TM get mainstreamed into applications? Jerry Bautista, Director, Microprocessor Technology Management at Intel says the evolution to multi-core architectures will create a need in the marketplace for technologies like transactional memory as the complexity of programming creates a new set of challenges.

“As we introduce more high performance hardware, there will be a demand generated in the programming community for ways to get around these common problems,” says Bautista. “People are already noting these challenges today. We're just trying to run ahead here.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire