Converging Design Features in CPUs and GPUs

By Matthew Papakipos

January 19, 2007

As CPUs and graphics processors (GPUs) evolve, many of their design features are beginning to look remarkably similar, and as a result, many of today's most common workloads will soon have a choice about where to execute. Users have been told by all the major hardware providers to expect processors that feature increasingly non-uniform and complex memory hierarchies, rapidly increasing core (and thread) counts and the integration of specialized acceleration units. These new processor designs will not be friendly to legacy code bases optimized for single-threaded, uniform memory systems, or, for that matter, to programmers without the time or expertise to create tuned, processor specific code. If we want to fully utilize these new hardware designs, then something needs to change about the way we write software.

Of course, some of these changes have been more widely evangelized than others. Many people know the history of multi-core on the CPU. When AMD shipped its first dual-core processor, multi-core processors really broke through into the commodity processor market. AMD was also first to incorporate both the memory interface logic and processor interconnect interface logic on the processor chip itself. And now Intel has shipped its first quad-core processors, as AMD is expected to do next year.

But what has happened to core count so far is merely the prologue to an imminent drastic increase in core counts. At the Intel Developer Forum 2006, for example, Intel showed off “Polaris”, a prototype processor with 80 cores, each with its own local, programmer-managed memory and with a fast on-chip interconnect. A wave of discussions ensued on numerous developer forums about whether the design was the best approach, but practically everyone agreed that there would be no easy way to program it.

In fact, industry pundits are predicting the solution to programming issues will be the next big software remediation effort as Moore's Law is realized by the doubling of the number of cores on a chip approximately every 18 months through 2015. According to Gartner Research vice president Carl Claunch, “If your software runs as a monolith, a single thread, you need to re-architect it to be parallel, otherwise the workload will not be capable of accessing the additional performance delivered with each new generation of systems.” Unfortunately, a majority of programmers are not sufficiently skilled to make applications multithreaded, yet the relentless doubling every 18 months will demand higher and higher levels of concurrency over time.

In another set of announcements, AMD has been talking up its “Torrenza” initiative. According to AMD, future CPUs won't be composed of homogeneous cores — there will simply be too many cores for useful work — but instead some of that chip area will be devoted to specialized accelerators. The first fruit of this approach will be the “Fusion” processor, an integrated CPU/GPU available sometime around the 2008 timeframe.

The GPU Design Evolution

Strangely enough, there are companies who already have lots of experience designing highly multi-core processors and enabling the software to take advantage of them: the GPU providers. GPUs have had massively multi-core designs for quite some time. The ATI R580 processor has 48 processing cores, while the just-shipped G80 from NVIDIA has an astonishing 128 processors. The GPU also has a history of adding accelerators for specialized functions, such as line-of-sight calculation.

Many people are familiar with the astonishing raw number-crunching potential of the GPU — the NVIDIA G80, for example, has half a teraflop of floating point capacity (for about $600) — but fewer are familiar with the other evolution in GPU designs. The GPU used to be a relatively inflexible, semi-fixed function processor, but the latest generation of GPUs, driven by Microsoft's DirectX 10 requirements, are outgrowing their graphics legacy and becoming, for want of a better term, “high throughput processors.”

With the new generation, (e.g., the NVIDIA G80), GPUs have added full dynamic flow control, integer support, full shared memory access, true scalar cores and multiple levels of non-uniform cache. Add to that the announcement by all GPU providers that double precision floating point is coming in the near future and you have a design that shares several striking features with Intel Polaris.

The Future of the Processor

Where are both CPU and GPU designs converging?

  • Both processors will be massively multi-core –- think hundreds of cores — within a five-year period.
  • Both processors will have complex memory hierarchies, with programmer managed core-local memories and core-local hardware-managed cache. (My own belief is that hardware-managed cache will decrease substantially in importance.)
  • Memories will be strongly non-uniform with significant latency and throughput differences between local and non-local memory.
  • Accelerators that can offer substantial speedups for specific tasks, either integrated on-chip or available via a HyperTransport-type interconnect, will be ubiquitous.

It's probably too much to say that GPUs and CPUs will merge. CPU features like a large cache as well as features such as branch prediction, speculative execution, etc. will likely never be adopted by the GPU. But GPUs, as they evolve into stream processors, should take over all those workloads that would rather have more floating point or integer ops, or faster access to a larger memory space. That means the majority of HPC applications, as well as any kind of signal processing or simulation application such as image processing, voice recognition, spam filtering, medical image analysis, etc.

Interestingly, another processor design that is converging on many of the same design features is the IBM Cell processor. The IBM Cell processor, used in the Sony PlayStation 3, embodies many of these features. The processor consists of a traditional PowerPC CPU core and eight additional on-chip “Synergistic Processing Engines” (SPE). Each SPE is, in-effect, a floating point co-processor core to offload computation from the main CPU core, and each SPE has its own local programmer-managed memory store of 256 KB. In addition, the local memory of each SPE can be accessed across a fast interconnect by other SPEs.

But What About the Software?

These future hardware designs couldn't be less welcome for the average software programmer. Until now, the programmer was insulated from changing hardware designs by their compilers and, occasionally, by libraries with standardized interfaces. At worst, programmers had to recompile their applications, or swap in a new library when they moved to a new generation of hardware. But no longer. To take full advantage of these new designs — whether on the GPU or the CPU — the programmer will have to extract and explicitly express parallelism (task or data parallelism) in their applications. And to achieve reasonable percentages of peak performance, they will also have to parameterize their applications to adjust for variations of cache sizes and cache hierarchies and add new code to handle NUMA effects. Given the effort and skill involved in doing this, I do not think this is likely to happen.

Instead, I think the most promising programming approach for overcoming the challenges associated with these future processors is what we call “stream programming.” Stream programming is a data parallel programming method compatible with distributed, explicitly managed memory that can offer superior productivity, performance and efficiency compared to alternative approaches. Stream programming requires the programmer to express the data parallelism in his or her problem. But all system specifics such as memory architectures, accelerators, etc. are abstracted from the programmer by a dynamic runtime which schedules and manages work appropriately based on the platform specifics. I believe that the stream programming approach creates the minimum possible change in the working habits of mainstream programmers, while extracting the maximum potential performance from these future processor designs.

As processor choices expand for many workloads, and as processor design features converge, the need for a viable software platform grows exponentially. New, and innovative technologies such as stream programming currently hold the most promise in fully exploiting the power and performance of these converging designs, propelling them out of the realm of research, and enabling the workhorse processors of tomorrow's high performance, and eventually general purpose computing.

—–

Matthew Papakipos is the founder and chief technology officer of PeakStream, a provider of a software application platform that uses the power of a new generation of industry-standard processors for high performance computing applications. Papakipos has been actively involved in the HPC market for more than a decade. As an early member of the Graphic Processing Unit processor architecture group at NVIDIA, he was responsible for personally developing several core architectural components of NVIDIA's revolutionary GeForce GPU. He is also the author of more than 20 U.S. patents on processor architecture and implementation. Matthew earned an SC.B. degree in Mathematics/Computer Science from Brown University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire