Innovation and Commoditization in High Performance Computing

By Christopher C. Aycock, MS

January 19, 2007

Consumer-product giants like Kraft or Procter & Gamble have to compete with cheap knock-offs under a retailer’s own brand. How they accomplish this is by developing a new product that does a better job of solving a customer’s need. “Better” can include safer, more effective, and easier to use.

That a pioneering work is copied is not lamentable. A dropping price means both greater accessibility and the incentive for greater creativity. Innovation and commoditization are complementary. If the former is a path, then the latter are its endpoints. An existing commodity product sets the starting location for the innovator’s journey that eventually leads to new products to commoditize.

Being Useful

Consider the x86 CPU. While Intel tried to disown its child by working on Itanium, AMD enhanced the x86 with 64-bit extensions, low power consumption, and multi-core architectures. AMD started with an existing commodity product, innovated, and created what has ultimately become a new commodity product.

To be precise, it’s not the x86 CPU that was important, but rather a CPU that can execute x86 instructions quickly. In creating a new instruction set, Intel required their customers to spend the time and money to port legacy systems to Itanium. AMD’s customers, meanwhile, were able to leverage their existing infrastructure more effectively. In essence, AMD followed the mantra of scientific discovery by standing on the shoulders of a giant. Building over an established baseline is a key factor for success.

Corporations often attempt to create an atmosphere of innovation. Common approaches include “skunk works” that bring A-list people together to work with minimal oversight, or “twenty-percent time” in which employees devote one day each week to a pet project. But more technologically advanced does not always mean better. Different does not equal useful. Innovation is only useful if it solves a problem.

HPC customers require a number of fast processors, a solid operating system, and a robust network. Linux Networx gives customers exactly this by integrating commodity components. In a way, they are doing for HPC today what Dell did for the PC twenty years ago. Compare that approach to Cray’s insistence on building their own network, among other components. Even Apple realized the error of their way and are now using the x86 with an open source kernel.

The Software Component

Certainly in the high-end server market open source operating systems are taking the stage. With its significantly lower cost of adoption, Linux has become a central component for many vendors. Compare that adoption trend to Solaris after the dot-com bust; Solaris finally became open source after Sun lost market share.

The interesting thing about open source software is that technically savvy users may also act as contributors, hence the abundance of open source technical computing tools. Challenges within a user’s domain thus subsequently drive the innovation of HPC software. This principle has led to a curious result in that end users are programming with MPI.

MPI was intended for software engineers. Technical computing customers without a background in computer science would be better served with a tool like MATLAB or Mathematica. Indeed, both of these now feature add-ons for parallel computing. Of special interest is interactive parallel computing, such as with Star-P or even Excel Services.

These commercial applications bring back the price issue. Traditional software licenses charge per node or CPU, which makes the applications inaccessible to some users. A better solution, one that is now available for enterprise computing customers, is the “software-as-a-service” paradigm. It seems feasible that ANSYS could make Fluent and LS-DYNA available on demand, in which customers rent time on a centrally managed cluster. (Note that this model is different from “grid computing,” which is a sharing model and usually only encompasses the underlying systems.)

How to Actually Make Money

Given that successful technology leads towards commoditization, the services business model certainly looks like an appealing strategy. IBM derives more than half of its revenue from consulting and related activities. RedHat exists to offer support for open source software. While this model is increasingly common, it is not the only — nor always the best — one available.

Another possible business strategy is to sell the essential component for a commodity product. Mellanox produces silicon for InfiniBand vendors, whereas Microsoft makes an operating system for PC manufacturers. Both companies were able to ensure the importance of their unique platforms by embracing developers and thereby creating an ecosystem of applications. The consequence of legacy leads to a “competitive moat” in which these companies are protected from rivals.

A third approach is to become a standout integrator of commodity components. Rackable Systems was able to grow in the wake of the dot-com bust under this model. The integration community has a number of their own innovations, such as blades, which reduce resource requirements, and the “personal supercomputer,” which is an easy-to-mange cluster-in-a-box.1

The fourth and most generic method is to innovate over the commodity component. For example, network vendors will only stay in business if they acknowledge the ubiquity of Ethernet, Sockets and TCP/IP. The OpenFabrics Alliance pushes iWARP, while Myricom and Quadrics have both released “10G” products. Compare those to the financial disaster from Dolphin’s SCI network.

Similarly, creating co-processors for existing processors can be a workable strategy. ClearSpeed’s CSX600 and IBM’s Cell-BE both compliment existing chips by adding more number-crunching capacity. Likewise, GPUs and FPGAs permit additional capabilities, especially with stream programming and electronic system-level tools respectively.

Instead of creating co-processors, it is possible to enhance the CPU and processor themselves. Recent strategies for this include virtualization extensions and multi-core architectures.2 All of these examples are innovations over the commodity component.

Observe the Old and Ring in the New

Many of the above cited cases were far from state-of-the-art. A successful venture needs to be useful, not just technologically advanced. Introducing anything new to the market carries with it risks, but building on an established base is a sure way to hedge the bets.

After studying Toyota’s processes, Matthew E. May described the carmaker’s mantra as “no best, only better.” By this, he meant that perfection can be pursued but never obtained. Toyota follows a path of gradual improvement to solve a particular need.

HPC vendors must look for opportunities of both innovation and commoditization if for no other reason than that the customer requires such.

1 It seems feasible that technical computing customers will one day do their work interactively on a desktop machine while intense number crunching is offloaded transparently to the department’s personal supercomputer. That, or offloaded to the application vendor’s own cluster for rent under a service agreement. Any entrepreneur looking for an idea may wish to investigate such a scenario.

2 Of course, massively multi-core chips and numerous co-processors lead to the potential for bus saturation. The solution to this is not to have a bus at all, but rather to embrace a direct-connect architecture. That is, to forgo SMP for NUMA. Because ccNUMAs present data-partitioning issues, naive shared-memory programming will prohibit best possible performance. Any student looking for a project may wish to investigate the partitioned global address space model of programming on massively multi-core processors.

—–

Christopher C. Aycock is wrapping up his PhD from Oxford University, where his thesis topic is in communications programming paradigms for high-performance networks. He can be reached via [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire