Innovation and Commoditization in High Performance Computing

By Christopher C. Aycock, MS

January 19, 2007

Consumer-product giants like Kraft or Procter & Gamble have to compete with cheap knock-offs under a retailer’s own brand. How they accomplish this is by developing a new product that does a better job of solving a customer’s need. “Better” can include safer, more effective, and easier to use.

That a pioneering work is copied is not lamentable. A dropping price means both greater accessibility and the incentive for greater creativity. Innovation and commoditization are complementary. If the former is a path, then the latter are its endpoints. An existing commodity product sets the starting location for the innovator’s journey that eventually leads to new products to commoditize.

Being Useful

Consider the x86 CPU. While Intel tried to disown its child by working on Itanium, AMD enhanced the x86 with 64-bit extensions, low power consumption, and multi-core architectures. AMD started with an existing commodity product, innovated, and created what has ultimately become a new commodity product.

To be precise, it’s not the x86 CPU that was important, but rather a CPU that can execute x86 instructions quickly. In creating a new instruction set, Intel required their customers to spend the time and money to port legacy systems to Itanium. AMD’s customers, meanwhile, were able to leverage their existing infrastructure more effectively. In essence, AMD followed the mantra of scientific discovery by standing on the shoulders of a giant. Building over an established baseline is a key factor for success.

Corporations often attempt to create an atmosphere of innovation. Common approaches include “skunk works” that bring A-list people together to work with minimal oversight, or “twenty-percent time” in which employees devote one day each week to a pet project. But more technologically advanced does not always mean better. Different does not equal useful. Innovation is only useful if it solves a problem.

HPC customers require a number of fast processors, a solid operating system, and a robust network. Linux Networx gives customers exactly this by integrating commodity components. In a way, they are doing for HPC today what Dell did for the PC twenty years ago. Compare that approach to Cray’s insistence on building their own network, among other components. Even Apple realized the error of their way and are now using the x86 with an open source kernel.

The Software Component

Certainly in the high-end server market open source operating systems are taking the stage. With its significantly lower cost of adoption, Linux has become a central component for many vendors. Compare that adoption trend to Solaris after the dot-com bust; Solaris finally became open source after Sun lost market share.

The interesting thing about open source software is that technically savvy users may also act as contributors, hence the abundance of open source technical computing tools. Challenges within a user’s domain thus subsequently drive the innovation of HPC software. This principle has led to a curious result in that end users are programming with MPI.

MPI was intended for software engineers. Technical computing customers without a background in computer science would be better served with a tool like MATLAB or Mathematica. Indeed, both of these now feature add-ons for parallel computing. Of special interest is interactive parallel computing, such as with Star-P or even Excel Services.

These commercial applications bring back the price issue. Traditional software licenses charge per node or CPU, which makes the applications inaccessible to some users. A better solution, one that is now available for enterprise computing customers, is the “software-as-a-service” paradigm. It seems feasible that ANSYS could make Fluent and LS-DYNA available on demand, in which customers rent time on a centrally managed cluster. (Note that this model is different from “grid computing,” which is a sharing model and usually only encompasses the underlying systems.)

How to Actually Make Money

Given that successful technology leads towards commoditization, the services business model certainly looks like an appealing strategy. IBM derives more than half of its revenue from consulting and related activities. RedHat exists to offer support for open source software. While this model is increasingly common, it is not the only — nor always the best — one available.

Another possible business strategy is to sell the essential component for a commodity product. Mellanox produces silicon for InfiniBand vendors, whereas Microsoft makes an operating system for PC manufacturers. Both companies were able to ensure the importance of their unique platforms by embracing developers and thereby creating an ecosystem of applications. The consequence of legacy leads to a “competitive moat” in which these companies are protected from rivals.

A third approach is to become a standout integrator of commodity components. Rackable Systems was able to grow in the wake of the dot-com bust under this model. The integration community has a number of their own innovations, such as blades, which reduce resource requirements, and the “personal supercomputer,” which is an easy-to-mange cluster-in-a-box.1

The fourth and most generic method is to innovate over the commodity component. For example, network vendors will only stay in business if they acknowledge the ubiquity of Ethernet, Sockets and TCP/IP. The OpenFabrics Alliance pushes iWARP, while Myricom and Quadrics have both released “10G” products. Compare those to the financial disaster from Dolphin’s SCI network.

Similarly, creating co-processors for existing processors can be a workable strategy. ClearSpeed’s CSX600 and IBM’s Cell-BE both compliment existing chips by adding more number-crunching capacity. Likewise, GPUs and FPGAs permit additional capabilities, especially with stream programming and electronic system-level tools respectively.

Instead of creating co-processors, it is possible to enhance the CPU and processor themselves. Recent strategies for this include virtualization extensions and multi-core architectures.2 All of these examples are innovations over the commodity component.

Observe the Old and Ring in the New

Many of the above cited cases were far from state-of-the-art. A successful venture needs to be useful, not just technologically advanced. Introducing anything new to the market carries with it risks, but building on an established base is a sure way to hedge the bets.

After studying Toyota’s processes, Matthew E. May described the carmaker’s mantra as “no best, only better.” By this, he meant that perfection can be pursued but never obtained. Toyota follows a path of gradual improvement to solve a particular need.

HPC vendors must look for opportunities of both innovation and commoditization if for no other reason than that the customer requires such.

1 It seems feasible that technical computing customers will one day do their work interactively on a desktop machine while intense number crunching is offloaded transparently to the department’s personal supercomputer. That, or offloaded to the application vendor’s own cluster for rent under a service agreement. Any entrepreneur looking for an idea may wish to investigate such a scenario.

2 Of course, massively multi-core chips and numerous co-processors lead to the potential for bus saturation. The solution to this is not to have a bus at all, but rather to embrace a direct-connect architecture. That is, to forgo SMP for NUMA. Because ccNUMAs present data-partitioning issues, naive shared-memory programming will prohibit best possible performance. Any student looking for a project may wish to investigate the partitioned global address space model of programming on massively multi-core processors.

—–

Christopher C. Aycock is wrapping up his PhD from Oxford University, where his thesis topic is in communications programming paradigms for high-performance networks. He can be reached via [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire