The New HPC

By Michael Feldman

January 19, 2007

With this week's announcement of the reorganization and expansion of Tabor Communications, HPCwire and our sister publication, GRIDtoday, will begin to offer a broader view of the high performance computing and Grid domains, respectively. By recognizing that computing productivity is now the most important aspect in IT, the industry has begun to look at ways to identify it, measure it and improve it. Our new company-wide focus on High Productivity Computing means that HPCwire will be providing news and analysis of the “old” high performance computing community from an expanded perspective.

That's going to make my job a bit more complex. Unlike simple computing metrics like SPEC or Linpack benchmarks; network measurements of bandwidth and latency; or storage measurements of capacity and data transfer rates; productivity is notoriously hard to quantify. It's one of those things that people think “I know it when I see it,” but it's difficult to measure.

The economic definition of productivity is the amount of output created per unit input used. In computing systems, the outputs would be the useful calculations, but the inputs are more numerous and complex. Software development, computers, networks, external storage, energy consumption, physical infrastructure and maintenance define a whole assortment of input parameters. The interaction between all these elements creates a number of challenges. For example, a high performing computer combined with low performing external storage running an I/O-intensive application will probably waste most of its computational speed waiting for disk transfers to complete. Another part of the productivity puzzle is wrapped up in intangibles like the usability of the software development environment. So it's not enough to simply add up the costs of the individual pieces of a system.

Maybe a more useful way to think about computing productivity is as a combination of a system's performance, programmability, portability, reliability, and application workloads. And in fact these are the main criteria that were defined in DARPA's High Performance Productivity Systems (HPCS) program, which is tasked to develop the next-generation petascale computing systems. One of the main goals of this program is to develop technologies that will result in a 10X improvement in productivity. It's generally understood that this is the most important (and ambitious) goal of the program and is significantly more challenging than just achieving peak petaflops.

In the November 2006 issue of CTWatch Quarterly, which was entirely devoted to the issue of high productivity computing, authors Declan Murphy, Thomas Nash and Lawrence Votta, Jr. from Sun Microsystems and Jeremy Kepner from MIT Lincoln Laboratory described a quantitative productivity framework for high performance computing.

In the article titled “A System-wide Productivity Figure of Merit,” the authors summarize the challenge: “Establishing a single, reasonably objective and quantitative framework to compare competing high productivity computing systems has been difficult to accomplish. There are many reasons for this, not the least of which is the inevitable subjective component of the concept of productivity. Compounding the difficulty, there are many elements that make up productivity and these are weighted and interrelated differently in the wide range of contexts into which a computer may be placed.”

By starting with the relationship “productivity = utility/cost” and then decomposing utility into a number of relatively independent factors, the authors construct the framework: “In a well-balanced HPCS, significant costs will be incurred for resources other than just the CPU cycles that dominate thinking in the commodity cluster architectures. In particular, memory and bandwidth resources will have cost as much or more than CPU, and efficient programs and job allocation will have to optimize use of memory and bandwidth resources as much as CPU. Our framework allows for the inclusion of any set of significantly costly resources.”

In another article in the same CTWatch issue titled “Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology,” Suzy Tichenor of the Council on Competitiveness and Albert Reuther from the MIT Lincoln Laboratory developed a model that attempts to predict the return on investment (ROI) of high performance computing using a benefits-cost calculation.

Tichenor and Reuther explain: “Traditionally, HPC systems have been valued according to how fully they are utilized (i.e., the aggregate percentage of time that each of the processors of the HPC system is busy); but this valuation method treats all problems equally and does not give adequate weight to the problems that are most important to the organization. With no ability to properly assess problems having the greatest potential for driving innovation and competitive advantage, organizations risk purchasing inadequate HPC systems or, in some cases, foregoing purchases altogether because they cannot be satisfactorily justified.”

Tichenor and Reuther argue that business HPC adoption is being held back at least in part because end users focus on the costs (easy to measure) rather than the benefits (hard to measure). Certainly the economic case for more widespread use of high performance computing in the private sector would be strengthened if users had some tools to measure HPC value.

The most compelling reason to focus on productivity is to improve it. As we enter the petascale era, the gap between system peak performance and system utilization will continue to widen unless the HPC community starts to design and program these machines rather differently. With computing performance accelerating away from memory bandwidth and multi-core architectures racing ahead of application concurrency, the imbalances that already exist in our terascale systems are going to become even more severe. These escalating problems have been described from different perspectives: as a multi-core crisis, as a datacenter power/cooling crisis, and as a software crisis. But more generally, the current dilemma in high performance computing is a crisis of productivity.

End users will always be interested in the cost-effectiveness of developing, running and maintaining their applications. But this requires more than just studying some bullet points on a marketing brochure detailing gigaflops, gigabytes, and gigabits per second. By recognizing that time-to-market (or time-to-solution), total cost of ownership and ROI are functions of productivity rather than just raw hardware performance, the industry is realizing that a more sophisticated model for evaluating computing systems is going to be required.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This