The New HPC

By Michael Feldman

January 19, 2007

With this week's announcement of the reorganization and expansion of Tabor Communications, HPCwire and our sister publication, GRIDtoday, will begin to offer a broader view of the high performance computing and Grid domains, respectively. By recognizing that computing productivity is now the most important aspect in IT, the industry has begun to look at ways to identify it, measure it and improve it. Our new company-wide focus on High Productivity Computing means that HPCwire will be providing news and analysis of the “old” high performance computing community from an expanded perspective.

That's going to make my job a bit more complex. Unlike simple computing metrics like SPEC or Linpack benchmarks; network measurements of bandwidth and latency; or storage measurements of capacity and data transfer rates; productivity is notoriously hard to quantify. It's one of those things that people think “I know it when I see it,” but it's difficult to measure.

The economic definition of productivity is the amount of output created per unit input used. In computing systems, the outputs would be the useful calculations, but the inputs are more numerous and complex. Software development, computers, networks, external storage, energy consumption, physical infrastructure and maintenance define a whole assortment of input parameters. The interaction between all these elements creates a number of challenges. For example, a high performing computer combined with low performing external storage running an I/O-intensive application will probably waste most of its computational speed waiting for disk transfers to complete. Another part of the productivity puzzle is wrapped up in intangibles like the usability of the software development environment. So it's not enough to simply add up the costs of the individual pieces of a system.

Maybe a more useful way to think about computing productivity is as a combination of a system's performance, programmability, portability, reliability, and application workloads. And in fact these are the main criteria that were defined in DARPA's High Performance Productivity Systems (HPCS) program, which is tasked to develop the next-generation petascale computing systems. One of the main goals of this program is to develop technologies that will result in a 10X improvement in productivity. It's generally understood that this is the most important (and ambitious) goal of the program and is significantly more challenging than just achieving peak petaflops.

In the November 2006 issue of CTWatch Quarterly, which was entirely devoted to the issue of high productivity computing, authors Declan Murphy, Thomas Nash and Lawrence Votta, Jr. from Sun Microsystems and Jeremy Kepner from MIT Lincoln Laboratory described a quantitative productivity framework for high performance computing.

In the article titled “A System-wide Productivity Figure of Merit,” the authors summarize the challenge: “Establishing a single, reasonably objective and quantitative framework to compare competing high productivity computing systems has been difficult to accomplish. There are many reasons for this, not the least of which is the inevitable subjective component of the concept of productivity. Compounding the difficulty, there are many elements that make up productivity and these are weighted and interrelated differently in the wide range of contexts into which a computer may be placed.”

By starting with the relationship “productivity = utility/cost” and then decomposing utility into a number of relatively independent factors, the authors construct the framework: “In a well-balanced HPCS, significant costs will be incurred for resources other than just the CPU cycles that dominate thinking in the commodity cluster architectures. In particular, memory and bandwidth resources will have cost as much or more than CPU, and efficient programs and job allocation will have to optimize use of memory and bandwidth resources as much as CPU. Our framework allows for the inclusion of any set of significantly costly resources.”

In another article in the same CTWatch issue titled “Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology,” Suzy Tichenor of the Council on Competitiveness and Albert Reuther from the MIT Lincoln Laboratory developed a model that attempts to predict the return on investment (ROI) of high performance computing using a benefits-cost calculation.

Tichenor and Reuther explain: “Traditionally, HPC systems have been valued according to how fully they are utilized (i.e., the aggregate percentage of time that each of the processors of the HPC system is busy); but this valuation method treats all problems equally and does not give adequate weight to the problems that are most important to the organization. With no ability to properly assess problems having the greatest potential for driving innovation and competitive advantage, organizations risk purchasing inadequate HPC systems or, in some cases, foregoing purchases altogether because they cannot be satisfactorily justified.”

Tichenor and Reuther argue that business HPC adoption is being held back at least in part because end users focus on the costs (easy to measure) rather than the benefits (hard to measure). Certainly the economic case for more widespread use of high performance computing in the private sector would be strengthened if users had some tools to measure HPC value.

The most compelling reason to focus on productivity is to improve it. As we enter the petascale era, the gap between system peak performance and system utilization will continue to widen unless the HPC community starts to design and program these machines rather differently. With computing performance accelerating away from memory bandwidth and multi-core architectures racing ahead of application concurrency, the imbalances that already exist in our terascale systems are going to become even more severe. These escalating problems have been described from different perspectives: as a multi-core crisis, as a datacenter power/cooling crisis, and as a software crisis. But more generally, the current dilemma in high performance computing is a crisis of productivity.

End users will always be interested in the cost-effectiveness of developing, running and maintaining their applications. But this requires more than just studying some bullet points on a marketing brochure detailing gigaflops, gigabytes, and gigabits per second. By recognizing that time-to-market (or time-to-solution), total cost of ownership and ROI are functions of productivity rather than just raw hardware performance, the industry is realizing that a more sophisticated model for evaluating computing systems is going to be required.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This