The New HPC

By Michael Feldman

January 19, 2007

With this week's announcement of the reorganization and expansion of Tabor Communications, HPCwire and our sister publication, GRIDtoday, will begin to offer a broader view of the high performance computing and Grid domains, respectively. By recognizing that computing productivity is now the most important aspect in IT, the industry has begun to look at ways to identify it, measure it and improve it. Our new company-wide focus on High Productivity Computing means that HPCwire will be providing news and analysis of the “old” high performance computing community from an expanded perspective.

That's going to make my job a bit more complex. Unlike simple computing metrics like SPEC or Linpack benchmarks; network measurements of bandwidth and latency; or storage measurements of capacity and data transfer rates; productivity is notoriously hard to quantify. It's one of those things that people think “I know it when I see it,” but it's difficult to measure.

The economic definition of productivity is the amount of output created per unit input used. In computing systems, the outputs would be the useful calculations, but the inputs are more numerous and complex. Software development, computers, networks, external storage, energy consumption, physical infrastructure and maintenance define a whole assortment of input parameters. The interaction between all these elements creates a number of challenges. For example, a high performing computer combined with low performing external storage running an I/O-intensive application will probably waste most of its computational speed waiting for disk transfers to complete. Another part of the productivity puzzle is wrapped up in intangibles like the usability of the software development environment. So it's not enough to simply add up the costs of the individual pieces of a system.

Maybe a more useful way to think about computing productivity is as a combination of a system's performance, programmability, portability, reliability, and application workloads. And in fact these are the main criteria that were defined in DARPA's High Performance Productivity Systems (HPCS) program, which is tasked to develop the next-generation petascale computing systems. One of the main goals of this program is to develop technologies that will result in a 10X improvement in productivity. It's generally understood that this is the most important (and ambitious) goal of the program and is significantly more challenging than just achieving peak petaflops.

In the November 2006 issue of CTWatch Quarterly, which was entirely devoted to the issue of high productivity computing, authors Declan Murphy, Thomas Nash and Lawrence Votta, Jr. from Sun Microsystems and Jeremy Kepner from MIT Lincoln Laboratory described a quantitative productivity framework for high performance computing.

In the article titled “A System-wide Productivity Figure of Merit,” the authors summarize the challenge: “Establishing a single, reasonably objective and quantitative framework to compare competing high productivity computing systems has been difficult to accomplish. There are many reasons for this, not the least of which is the inevitable subjective component of the concept of productivity. Compounding the difficulty, there are many elements that make up productivity and these are weighted and interrelated differently in the wide range of contexts into which a computer may be placed.”

By starting with the relationship “productivity = utility/cost” and then decomposing utility into a number of relatively independent factors, the authors construct the framework: “In a well-balanced HPCS, significant costs will be incurred for resources other than just the CPU cycles that dominate thinking in the commodity cluster architectures. In particular, memory and bandwidth resources will have cost as much or more than CPU, and efficient programs and job allocation will have to optimize use of memory and bandwidth resources as much as CPU. Our framework allows for the inclusion of any set of significantly costly resources.”

In another article in the same CTWatch issue titled “Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology,” Suzy Tichenor of the Council on Competitiveness and Albert Reuther from the MIT Lincoln Laboratory developed a model that attempts to predict the return on investment (ROI) of high performance computing using a benefits-cost calculation.

Tichenor and Reuther explain: “Traditionally, HPC systems have been valued according to how fully they are utilized (i.e., the aggregate percentage of time that each of the processors of the HPC system is busy); but this valuation method treats all problems equally and does not give adequate weight to the problems that are most important to the organization. With no ability to properly assess problems having the greatest potential for driving innovation and competitive advantage, organizations risk purchasing inadequate HPC systems or, in some cases, foregoing purchases altogether because they cannot be satisfactorily justified.”

Tichenor and Reuther argue that business HPC adoption is being held back at least in part because end users focus on the costs (easy to measure) rather than the benefits (hard to measure). Certainly the economic case for more widespread use of high performance computing in the private sector would be strengthened if users had some tools to measure HPC value.

The most compelling reason to focus on productivity is to improve it. As we enter the petascale era, the gap between system peak performance and system utilization will continue to widen unless the HPC community starts to design and program these machines rather differently. With computing performance accelerating away from memory bandwidth and multi-core architectures racing ahead of application concurrency, the imbalances that already exist in our terascale systems are going to become even more severe. These escalating problems have been described from different perspectives: as a multi-core crisis, as a datacenter power/cooling crisis, and as a software crisis. But more generally, the current dilemma in high performance computing is a crisis of productivity.

End users will always be interested in the cost-effectiveness of developing, running and maintaining their applications. But this requires more than just studying some bullet points on a marketing brochure detailing gigaflops, gigabytes, and gigabits per second. By recognizing that time-to-market (or time-to-solution), total cost of ownership and ROI are functions of productivity rather than just raw hardware performance, the industry is realizing that a more sophisticated model for evaluating computing systems is going to be required.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire