Enforcing Moore’s Law

By Michael Feldman

February 2, 2007

Last Friday Intel demonstrated x86 processors with twice the transistor density of its current designs. Using 45nm process technology and new transistor materials, the company said it has achieved a significant breakthrough in transistor design and that this technology will be incorporated into production microprocessors in the second half of 2007. Although IBM also announced its plans for 45nm processors last Friday, Intel will be the first chipmaker to deliver the new technology into the marketplace.

The technology that makes the move to 45nm possible involves new materials that dramatically reduces transistor leakage — an increasingly vexing problem with each new processor shrink. The new 45nm processors will use a hafnium-based high-k insulator in the gate dielectric and metal gate electrodes to reduce leakage significantly. The new materials replace silicon dioxide as the gate dialectric and polysilicon as the gate electrode, two compounds which have been used in transistors for decades. The new combo will enable Moore's Law to continue for at least a couple more processor generations before even more advanced technology is required.

It seems fitting that Intel is the chipmaker leading the charge for Moore's Law. In 1965, Gordon Moore, the company's co-founder, made the empirical observation that the number of transistors on an integrated circuit would double every two years (since updated to every 12-18 months). It was a self-fulfilling prophecy. He has not only lived to see the Law upheld for over forty years, but also the replacement of the underlying transistor technology, which had remained unchanged for almost as long.

According to Moore, “the implementation of high-k and metal materials marks the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s.”

Intel says that the new technology can be used to increase the performance or decrease the power requirements on the new chips — something that had been increasingly hard to balance as transistor leakage started to become more serious in the last couple of processor shrinks. The engineers tell us the new technology provides a 30 percent reduction in transistor switching power and more than a 10x reduction in gate leakage. With the revamped transistor materials, Intel can be much more aggressive with dialing the clock up for higher performance or dialing it down to increase energy efficiency.

Using similar transistor materials to Intel, IBM has also been designing 45nm circuitry for some time, but it won't be begin production of processors based on that technology until 2008. This puts it at least six months behind Intel (probably more), which means IBM and its partners — AMD, Toshiba, Sony and others — will be playing catchup once again in the process technology race. AMD in particular stands to suffer, since its x86 processors go head-to-head against Intel's offerings. Since AMD has to fight the transistor technology battle through its IBM proxy IBM, it doesn't have as much control as Intel does when it comes to coordinating the process technology with its processor design.

Nevertheless, AMD is looking to make up for some lost ground in 2007. When the quad-core Opteron 'Barcelona' chip (65nm) is released this summer, AMD engineers claim they will have a 40 percent performance advantage over the comparable Intel 'Clovertown' processor.

But that advantage might be short-lived. Conceivably, Intel could roll out a 45nm quad-core processor this year. That chip would likely to be more powerful than the 65nm Clovertown or Barcelona, and perhaps more energy efficient as well. The 45nm process size gives Intel some options that compensate for their older front-side-bus and off-chip memory controller. With smaller transistors, extra die space can be used to add more cache (less memory accesses) or more CPU intelligence to increase performance.

Intel claims it is now a full year ahead of its competitors in process technology. While AMD hardware still retains an advantage in scaled up systems, it can't afford to fall too far behind Intel in the fundamentals. The typical cycle has been for Intel to claim the advantage when it moves to a new process technology and then lose it when AMD's processors reach the same level. If AMD falls more than a process generation behind, it won't be able to play leap-frog anymore.

HPC vendors that rely on AMD for their clusters or supercomputers may begin to fret if the processor technology gets too far behind the curve. Cray, in particular, has a long-term arrangement with AMD to use Opterons in its next generation supercomputers through the end of the decade. Other HPC OEMs that offer clustered servers with either Xeons or Opterons have more flexibility, but the dual-vendor arrangement has been valuable in and of itself to help keep the x86 market competitive.

AMD can take some comfort in the fact that transistor technology advancements do not drive the industry the way they did 10 years ago, when CPU speed was everything. Today, memory bandwidth has become such a limiting factor in relation to CPU performance that processor architecture and system architecture is at least as important. This is especially true in the scaled up multi-processor machines that inhabit the datacenters of high performance computing users. And it is here that AMD, with its HyperTransport bus technology and integrated memory controller, still claims the advantage over its rival.

Also, by using silicon-on-insulator (SOI) and strained silicon technologies for its chips, AMD is able to compensate for its larger transistor sizes. SOI is more expensive to manufacture, but offers higher performance than conventional silicon. It's one of the reasons why AMD processors are so competitive with their Intel counterparts once they reach the same transistor geometries.

Intel has committed to maintain a two-year technology cadence — their so-called 'tick-tock' model — that encompasses a processor shrink (tick) followed by a new microarchitecture design (tock). It can be a challenge to line up this model with the demands of the various x86 markets. A Centrino-based laptop might be replaced every two years, while a Xeon-based supercomputer is more likely to have at least a five or ten year life. Superimposed on this is the fact that the laptop user may have very little use for more cores, extra cache or better performance if existing consumer software can't take advantage of it. On the other hand, the supercomputer user is much more likely to use all of these capabilities.

Eventually the marketplace will decide the value of processor technology advancements. Both Intel and AMD have to navigate the diverse markets they serve with the x86, but ultimately they are counting on the OEMs and their customers to join them on the technology treadmill.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This