INCITE Program Targets American Competitiveness

By Steve Conway

February 9, 2007

In this exclusive HPCwire interview, Dr. Raymond Orbach, director of the Department of Energy's (DOE) Office of Science and the nation's first Under Secretary for Science, and Council on Competitiveness President Deborah L. Wince-Smith discuss the value of DOE's INCITE program. INCITE awards huge blocks of time on DOE supercomputers to university, industrial and national laboratory research projects with strong potential for HPC-assisted breakthroughs.

HPCwire: How and when did the INCITE program come about?

Dr. Orbach: We launched the program in 2003, more out of instinct than anything else. We believed science and industry would profit from greater access to high-end computation. The problem back then was that in the U.S., we in the government were awarding computer time more to maximize the number of users, with the result that everyone got a little time. This proved not to be an efficient way to address real problems. I know from my own experience what it's like to work on challenging problems when your computer time is limited.

We asked ourselves how discovery could advance if we gave people enough time to solve major problems and allocated the machine time based on peer review. We started with just four proposals, but when people found out we'd be allocating as much as a million hours or more per project, INCITE really caught on.

HPCwire: Has the program turned out as expected? Have there been any surprises or learning experiences along the way?

Dr. Orbach: INCITE has proven itself beyond any expectations we had. For 2007, nine industries were awarded time. One lesson from the program is that researchers in industry are fully on a par with researchers in universities and can have problems that are just as challenging. This was a surprise. Another surprise is that computational speeds have increased so rapidly. In 2003 when the program started, I was skeptical that we would have a petaflop machine any time soon. Now we have a shot at that at Oak Ridge by the end of the next fiscal year. Petaflop computing will make the INCITE concept even more powerful. We'll be able to do convergence on Navier-Stokes equations, for example, which I thought we'd never be able to do. The opportunities are quite remarkable.

HPCwire: What led the Council to recommend that DOE extend the program to U.S. industry in 2005?

Ms. Wince-Smith: The Council's fundamental belief is that U.S. competitiveness and the nation's ability to add high-value economic activity increasingly depend on 21st-century modeling and simulation. DOE has been a global leader in using high-end HPC systems for government missions requiring capabilities at the frontier of computing. As U.S. taxpayers, we have all invested in these HPC capabilities. The INCITE program is leveraging these investments not only to advance the nation's scientific leadership, but our industrial competitiveness and standard of living.

HPCwire: Why did you choose to collaborate with the Council for the INCITE program?

Dr. Orbach: The Council on Competitiveness brings a wealth of partners from industry that DOE would not otherwise be able to reach. We chose to collaborate with the Council in order to broaden the reach of INCITE, and that choice has proven itself time and again to be the right one. Like DOE, the Council and its members care deeply about American competitiveness. Collaboration with the Council — particularly in the area of high performance computing — is a natural extension of our mutual interest in American leadership in basic and applied research.

One problem government has is choosing winners. People get very upset if they think this might be happening. We wanted to team up with an organization, in this case a private organization, that would be open to the private sector and acceptable to the private sector as a vehicle for transmitting proposals. The Council also recognized early on the advantages that high-end computing provides to industry. They knew it could reduce time-to-market and prototyping costs if industry could get large blocks of computer time and some help with software. In our companion program, SciDAC, DOE works with science and industry to improve their codes. The program brings in mathematicians, scientists, computer scientists and others to work as a team. The sociology of computing has really changed. There are now people from different fields collaborating as teams to optimize codes. This is what makes the U.S. special. Other countries are not doing this to anything like the extent we are.

HPCwire: Dr. Orbach talked about the growing importance of multidisciplinary HPC research. What's the Council's view on this?

Ms. Wince-Smith: This ties back to the Council's view on 21st-century innovation, and how different today's research is from the way research was done 10 to 20 years ago, when the primary approach was individuals working in centralized research facilities and in sharply demarcated disciplines. Today's biggest insights are coming from the fusion of knowledge from different fields, and from applying HPC to these multidisciplinary problems. For studying disease pathways through the body, for example, knowledge is needed about physics, chemistry, biology and in some cases also nanotechnology. HPC is going to accelerate the demonstration and implementation of multidisciplinary science, including within business and industrial settings.

HPCwire: What are the benefits of the INCITE program for U.S. industry?

Ms. Wince-Smith: We see them as three-fold. First, INCITE provides an opportunity to tackle hard, complex problems that otherwise can't be investigated well today. In this sense, INCITE extends the R&D capabilities of program participants. A second important benefit is that INCITE participants from industry form new relationships with individuals at national labs who understand how to exploit cutting-edge HPC architectures and simulation on very advanced problems. Finally, INCITE gives industrial participants a competitive advantage in moving to next-generation problems and servers. The INCITE work helps them makes decisions about which way to go with their product development. That can be worth millions of dollars to the companies.

HPCwire: What are the benefits of industry participation for DOE?

Dr. Orbach: This program is about competitiveness. We are part of the President's American Competitiveness Initiative, and in his State of the Union address, this year and last, he talked about the importance of basic research to the competitiveness of our country. At DOE, we're using our computing resources to enhance the competitiveness of U.S. industry. At a recent Council board meeting, I heard story after story about offshoring and the competitiveness of other countries based on labor costs. I talked about something that's uniquely American: having these high-end machines. We've had many meetings and workshops, and the Council's done multiple studies, and we know what's needed. We need more virtual prototyping. Pratt & Whitney, Procter & Gamble, GE, Wal-Mart and other major companies told us they could save tens of millions of dollars if they could simulate their most challenging problems. Boeing has substantially reduced the number of physical prototypes they build and the number of wind tunnel tests they conduct. Physical experiments are very expensive and time-consuming. These companies and others have gotten confident enough in computer simulation and modeling to cut back on the physical experiments, and this is making them more competitive.

HPCwire: Are there empirical metrics for evaluating the success of the INCITE program? For example, do participants need to submit periodic reports to the DOE?

Dr. Orbach: We get reports every year. Keep in mind, however, that working on computer architectures at this scale is new for most of the INCITE awardees. These companies had access before to maybe 5,000 or 100,000 CPU hours.

This is a learning process for all of us. The first lesson is that you often can't do everything in one year. It takes a while to optimize codes on these architectures. That's why we've given some two- and three-year awards. We get a report from every INCITE awardee each year that we have peer reviewed. Our ultimate metric, though, is discovery. The real question is, are we able to enhance scientific and industrial discovery with the help of high-end simulation?

HPCwire: What kind of feedback has the DOE gotten from scientific and industrial participants in the INCITE program?

Dr. Orbach: The feedback has been overwhelmingly positive. [See comments at end of interview.] It indicates that the community thinks this program is for real. Another indication is that the number of proposals has shot up quickly. For 2007, we got requests for twice as much time as we have available, even though we substantially increased the number of available CPU hours. The requests totaled 180 million CPU hours, versus the 95 million we were able to award. We have a variety of architectures in the INCITE program. NERSC has been oriented more toward capacity machines to handle requests for smaller numbers of CPU hours, while at Oak Ridge and Argonne we have capability machines where we allocate large blocks of time to a more limited number of users.

HPCwire: Do the 95 million hours represent excess capacity on these computers, which would have gone unutilized if not for the program?

Dr. Orbach: No. These hours represent an opportunity we created by investing in these architectures. We didn't know at the start what the efficiency of each of these architectures would be. We're learning about that in practice and finding out which architectures are most effective for which problems. Our high-end machines have always been oversubscribed, but our belief from the beginning has been that making them available through the INCITE program is what's needed to advance science and industry.

HPCwire: In sum, what do you think the INCITE program does for U.S. competitiveness?

Ms. Wince-Smith: It propels us into performing the high-value economic activity on which our prosperity depends. The U.S. can no longer compete successfully on low-end, commoditized engineering work. We need to push the innovation envelope and compete from the frontiers of these disciplines and fields. INCITE isn't just about getting access to these powerful computing tools; it's even more about what they enable researchers to think about. This program helps expand the horizons of scientific and industrial thinking, and this leads to greater competitiveness.

One area with great potential, for example, is the intersection between our current energy portfolio and moving away from carbon and toward sustainability. This in itself is a crucial, fascinating problem that will be addressed both in the national labs and by industry researchers. To remain competitive, we need to keep creating the future. Supercomputing gives us the ability to do this.

INCITE is truly a great example of a public-private partnership. It takes real leadership to do in the public sector what Dr. Orbach and his team have done with this program. They had the foresight and conviction to recognize and grasp these large opportunities. We at the Council couldn't have gone forward with our HPC Initiative without a public sector partner like Dr. Orbach. I think he will have a profound legacy, and we're honored to work with him and DOE on the INCITE program.

HPCwire: I would ask you the same question, with respect to scientific and industrial competitiveness.

Dr. Orbach: The question remains to be answered over time, but we can already see some important progress. New findings on the rotation of neutron stars by an Oak Ridge researcher were reported in the January 2007 issue of Nature magazine and considered for that issue's front cover. These findings would not have happened, at least not nearly as soon, if Tony Mezzacappa had not had access to these high-end computing resources. This is what I mean by discovery. Simulation is really proving itself as the third pillar of scientific discovery, fully on a par with theory and experimentation. We have enough confidence in simulation that we are continuing to enhance the speeds and variety of the architectures we use. Sandia co-developed the large “Red Storm” system that became the basis for the Cray XT3 at Oak Ridge. The Blue Gene/L at Argonne will morph into the Blue Gene/P. NERSC will move into new architectures and split between capacity and capability machines. My personal belief is that scientific discovery can advance well in this way.

—-

For comments about the program from some of the INCITE participants, visit http://www.hpcwire.com/hpc/1255549.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This