Quantum Computing Steps Out of the Research Lab

By Michael Feldman

February 16, 2007

On Tuesday at the Computer History Museum in Mountain View, California, a Canadian tech startup called D-Wave demonstrated a prototype of a commercial quantum computer. The company claims their 16-qubit system is by far the most powerful quantum computer ever built and the first ever to run commercial applications. The purpose of the demonstration was to provide “proof-of-concept” for upcoming commercial products.

While many researchers have estimated that quantum devices will not be commercially viable for another 20 to 50 years, D-Wave founder and CTO Geordie Rose has aggressively pursued his dream of developing a commercial device in a much shorter timeframe. In 1999, he formed D-Wave to begin his pursuit of superconductor-based quantum computing. A superconductor implementation was chosen because unlike other QC approaches, such as quantum dots or optical circuits, it does not rely on the development of future technologies.

Unlike bits in digital computers, quantum computers contain quantum bits (qubits), which can exist as 0, 1, or a superposition of both. The property of superposition is at the heart of quantum computing.

The D-Wave system relies on a technology called adiabatic quantum computing to do its work. The hardware consists of a 4×4 array of magnetic flux qubits, which are implemented as niobium rings. At temperatures close to absolute zero they become superconducting, enabling them to behave quantum mechanically. Because of the quantum mechanical behavior, the 16-qubit system is able to perform 64K calculations simultaneously.

The demonstration used the D-Wave prototype system, called Orion, running remotely at the company's headquarters in Burnaby, Canada. Three different applications were put through their paces. The first was a pattern matching application used to search a databases of molecules. The second was a seating plan application, where wedding seat assignments were subject to a number of constraints. The third application demonstrated solutions to the Suduko puzzle.

The algorithms were adapted such that they were recast as combinatorial graphs. A conventional digital preprocessor ran the applications, but the graphs were sent to the QC hardware, where they were distributed across the qubit array.

If this sounds like a lot of trouble for searching a database or assigning some seats, the real payoff comes when the system is scaled up to thousands of qubits. Quantum computers of this size should be able to solve problems that cannot be solved by any conventional computer, no matter how large powerful.

“There are problems out there that just don't scale polynomially, they scale exponentially,” says D-Wave CEO Herb Martin.

He is referring to NP-complete problems, which require examining a very large number of possibilities. For these types of problems, computation time on a conventional digital computer goes up exponentially as the number of combinations increases. An example is the subset sum problem, which is important to cryptography. The problem may be stated as follows: for a given set of integers, does a subset of the numbers exist, which when added together, equals zero? For example, in the set {-7, -3, -2, 5, 8}, the subset {-3, -2, 5} is the solution. A digital computer would be able to determine this in a fraction of a second. However, if the given set of numbers grew to a couple of hundred elements, it would take billions of years for the computer to solve it. A quantum computer of reasonable size could solve it almost instantly.

Or could it? D-Wave's Geordie Rose admits that using quantum computers to achieve exact solutions to NP-complete problems is unproven. D-Wave's specific claim is that these systems will be able to derive very useful “approximate solutions” for such applications, where the problem does not require an exact solution.
 
Virtually any industry has applications that could make use of this capability. This applies to most real-world problems where the number of combinations limits how fast a conventional computer can generate a useful solution. Applications like protein folding, drug discovery, genomics, machine vision, security biometrics, quantitative finances, data mining, VLSI layout, nanoscale simulation, supply chain management, and many others can be re-cast as QC-native algorithms. All of these problems are currently being addressed with conventional computers, but the scale of the algorithm will always be limited by the digital nature of the computation.

This is not to suggest that conventional computers are doomed to extinction. The folks at D-Wave believe that quantum devices will augment digital computers, much as a hardware accelerator is used today. This seems to be a widely held view in the computing community.

“From a business perspective, I think that quantum computers are never going to completely displace classical supercomputers,” said Colin Williams, a senior QC researcher at JPL. “What I foresee is a sort of symbiotic relationship, where you have something akin to a quantum co-processor and the classical supercomputer would farm out specific questions for the quantum co-processor to answer; and then it would get the answer and incorporate that into its own ongoing computation.”

But despite this week's demonstration, the question of quantum computing's viability remains. There is certainly no shortage of D-Wave skeptics. QC researchers note that the company has not published their work in peer-reviewed journals, and have doubts that the company's offering represents true quantum computing. At the center of the controversy is whether adiabatic quantum computation is all it's cracked up to be. For the adiabatic model to work, the computation must be driven fast enough to give you the answer in a useful timeframe, but slow enough so as to maintain the adiabatic condition. Many believe that the process may not be feasible. The real proof point will be when a larger-qubit machine solves an NP-complete problem of sufficient size to demonstrate the expected quantum computing acceleration.

While the prototype demonstrated this week is not ready to do this, D-Wave has used this opportunity to get the word out that QC is not just something relegated to the research labs. According to CEO Herb Martin, the company is planning to release an online system in Q4 of 2007. This 32-qubit machine will be made available to the open source community to encourage users to port their applications to the company's platform. Beyond that, D-Wave intends to deliver a commercial 512-qubit machine in mid-2008 and a 1,024-qubit system by the end of that year. Stay tuned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This