Quantum Computing Steps Out of the Research Lab

By Michael Feldman

February 16, 2007

On Tuesday at the Computer History Museum in Mountain View, California, a Canadian tech startup called D-Wave demonstrated a prototype of a commercial quantum computer. The company claims their 16-qubit system is by far the most powerful quantum computer ever built and the first ever to run commercial applications. The purpose of the demonstration was to provide “proof-of-concept” for upcoming commercial products.

While many researchers have estimated that quantum devices will not be commercially viable for another 20 to 50 years, D-Wave founder and CTO Geordie Rose has aggressively pursued his dream of developing a commercial device in a much shorter timeframe. In 1999, he formed D-Wave to begin his pursuit of superconductor-based quantum computing. A superconductor implementation was chosen because unlike other QC approaches, such as quantum dots or optical circuits, it does not rely on the development of future technologies.

Unlike bits in digital computers, quantum computers contain quantum bits (qubits), which can exist as 0, 1, or a superposition of both. The property of superposition is at the heart of quantum computing.

The D-Wave system relies on a technology called adiabatic quantum computing to do its work. The hardware consists of a 4×4 array of magnetic flux qubits, which are implemented as niobium rings. At temperatures close to absolute zero they become superconducting, enabling them to behave quantum mechanically. Because of the quantum mechanical behavior, the 16-qubit system is able to perform 64K calculations simultaneously.

The demonstration used the D-Wave prototype system, called Orion, running remotely at the company's headquarters in Burnaby, Canada. Three different applications were put through their paces. The first was a pattern matching application used to search a databases of molecules. The second was a seating plan application, where wedding seat assignments were subject to a number of constraints. The third application demonstrated solutions to the Suduko puzzle.

The algorithms were adapted such that they were recast as combinatorial graphs. A conventional digital preprocessor ran the applications, but the graphs were sent to the QC hardware, where they were distributed across the qubit array.

If this sounds like a lot of trouble for searching a database or assigning some seats, the real payoff comes when the system is scaled up to thousands of qubits. Quantum computers of this size should be able to solve problems that cannot be solved by any conventional computer, no matter how large powerful.

“There are problems out there that just don't scale polynomially, they scale exponentially,” says D-Wave CEO Herb Martin.

He is referring to NP-complete problems, which require examining a very large number of possibilities. For these types of problems, computation time on a conventional digital computer goes up exponentially as the number of combinations increases. An example is the subset sum problem, which is important to cryptography. The problem may be stated as follows: for a given set of integers, does a subset of the numbers exist, which when added together, equals zero? For example, in the set {-7, -3, -2, 5, 8}, the subset {-3, -2, 5} is the solution. A digital computer would be able to determine this in a fraction of a second. However, if the given set of numbers grew to a couple of hundred elements, it would take billions of years for the computer to solve it. A quantum computer of reasonable size could solve it almost instantly.

Or could it? D-Wave's Geordie Rose admits that using quantum computers to achieve exact solutions to NP-complete problems is unproven. D-Wave's specific claim is that these systems will be able to derive very useful “approximate solutions” for such applications, where the problem does not require an exact solution.
 
Virtually any industry has applications that could make use of this capability. This applies to most real-world problems where the number of combinations limits how fast a conventional computer can generate a useful solution. Applications like protein folding, drug discovery, genomics, machine vision, security biometrics, quantitative finances, data mining, VLSI layout, nanoscale simulation, supply chain management, and many others can be re-cast as QC-native algorithms. All of these problems are currently being addressed with conventional computers, but the scale of the algorithm will always be limited by the digital nature of the computation.

This is not to suggest that conventional computers are doomed to extinction. The folks at D-Wave believe that quantum devices will augment digital computers, much as a hardware accelerator is used today. This seems to be a widely held view in the computing community.

“From a business perspective, I think that quantum computers are never going to completely displace classical supercomputers,” said Colin Williams, a senior QC researcher at JPL. “What I foresee is a sort of symbiotic relationship, where you have something akin to a quantum co-processor and the classical supercomputer would farm out specific questions for the quantum co-processor to answer; and then it would get the answer and incorporate that into its own ongoing computation.”

But despite this week's demonstration, the question of quantum computing's viability remains. There is certainly no shortage of D-Wave skeptics. QC researchers note that the company has not published their work in peer-reviewed journals, and have doubts that the company's offering represents true quantum computing. At the center of the controversy is whether adiabatic quantum computation is all it's cracked up to be. For the adiabatic model to work, the computation must be driven fast enough to give you the answer in a useful timeframe, but slow enough so as to maintain the adiabatic condition. Many believe that the process may not be feasible. The real proof point will be when a larger-qubit machine solves an NP-complete problem of sufficient size to demonstrate the expected quantum computing acceleration.

While the prototype demonstrated this week is not ready to do this, D-Wave has used this opportunity to get the word out that QC is not just something relegated to the research labs. According to CEO Herb Martin, the company is planning to release an online system in Q4 of 2007. This 32-qubit machine will be made available to the open source community to encourage users to port their applications to the company's platform. Beyond that, D-Wave intends to deliver a commercial 512-qubit machine in mid-2008 and a 1,024-qubit system by the end of that year. Stay tuned.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This