Picking the Right Trends

By Michael Feldman

February 23, 2007

Because high performance computing lives on the leading edge of information technology, predicting the path of HPC is like forecasting the future of the future. When Cray Research and CDC began selling supercomputers with custom processors in the early '70s, it probably seemed inconceivable that in three decades most high performance computing would be done on the descendants of PC chips. Only using the rear-view mirror of the present can we see that it was all inevitable. The economics of volume chip production, the introduction of cluster and grid computing, the momentum of a rapidly growing software base, and Moore's Law all conspired to propel the x86 into HPC preeminence. Everything else was just noise.

It's easy to identify the visible new trends today. In fact, they're generally the same in HPC as they are in the overall industry: the rise of multi-core and heterogeneous processing, the importance of power consumption, the industry embrace of open source software, virtualization — in all its forms, and the struggle for application parallelization. But which of these, if any, is just noise? And how will all these elements interact?

Predicting winning technology formulas is not just an exercise for the armchair geek. It's the intellectual focus of most IT organizations and informs their most basic business decisions. And while most companies end up just following trends to stay afloat, some actually set them for the rest of the industry. Intel and AMD fall into the latter category.

Even though the two x86 chipmakers are going after the same markets, their underlying technology strategies are diverging. Intel uses its in-house semiconductor and CPU design expertise to be the leader in x86 performance and power-efficiency. Its aggressive two-year cadence of processor shrinks and core redesigns is designed to stay ahead of its rivals on fundamental microprocessor technology. Meanwhile, AMD emphasizes system design to achieve scalability and overall system throughput. The company is also trying to establish an AMD-based ecosystem, using Torrenza and HyperTransport to foster open standards for third party silicon.

While these two chip titans are busy inventing the future, they also are effected by trends they can't control. Late last year, AMD made the biggest strategic decision of its life when it acquired ATI. It saw the future of general-purpose processing as something more than the x86. The company's CPU-GPU Fusion initiative and the ongoing development of discrete GPUs is AMD's way to bring heterogeneous processing in-house. Rumors abound that Intel is working on adding high-end GPUs to its offerings as well. Publicly the chipmaker has been mum on the subject, but the Intel web page that lists job openings for graphics engineers (http://www.intel.com/jobs/careers/visualcomputing/) provides a pretty good indication of the company's intent.

In this week's issue, Intel and AMD offer an outline of their high performance computing strategy — at least the public strategy. Stephen Wheat, senior director of Intel's HPC Business Unit, talks about x86 high performance computing, and how the company's overall strategy fits into that market. Phil Hester, AMD CTO and Bob Drebin, CTO for the AMD's Graphics Products Group, answer questions about how their company's technology roadmap targets future HPC workloads.

What may be most similar about the two companies is their measured devotion to high performance computing. Both organizations have internal HPC units, but these entities have only limit effect on driving overall company strategy. That makes good business sense. With an x86 market nearing $30 billion annually (Mercury Research, 2006), the HPC slice represents just a fraction of that; the entire HPC market is around $10 billion, according to IDC. While high performance computing is important to both companies, it's treated as a leverage poiint for the larger business rather than as an end-point in itself.

“[W]e rarely look at the HPC segment in isolation,” said Intel's Stephen Wheat. “HPC innovation quickly migrates into the enterprise segment. There are many opportunities for HPC to influence offerings in the larger markets.”

The realities of commodity-based HPC are intimately tied to the mega-trend of multi-core processors. This architectural shift means that parallel processing is not just for HPC anymore. All the chipmakers, not just Intel and AMD, are counting on this. In fact, multi-core processing is going to blur the distinction between general purpose and high performance computing. It may be the most profound development in computer hardware since the integrated circuit.

The February edition of CTWatch Quarterly (http://www.ctwatch.org/quarterly/) has devoted the entire issue to the multi-core revolution. It traces the rationale behind the revolution, describes its impact, and outlines the problems this new architecture has created for computing in the 21st century. The four articles in the issue include: The Impact of Multicore on Computational Science Software, The Many-Core Inflection Point for Mass Market Computer Systems, The Role of Multicore Processors in the Evolution of General-Purpose Computing, and High Performance Computing and the Implications of Multi-core Architectures. All are worth reading if you want to understand the paradigm that is shifting beneath your feet.
 
Pushback on Programming

Apparently my commentary a couple of weeks back, HPC Programming for the Masses, struck a nerve. Professor Marc Snir, head of the CS department of at the University of Illinois Urbana Champaign-Urbana, took exception to my perspective on the relative importance of different programming language models for HPC. The view I put forth was that HPC-enabled versions of domain specific languages such as MATLAB, Excel and SQL will be more important than traditional third generation languages in spreading the commercial use of HPC, since it will broaden the developer base beyond computer scientists.

Snir's point of view is that we should leave programming to the professionals — i.e., software engineers. To be honest, he's in good company. Bjarne Stroustrup, the inventor of C++, expressed the same sentiments in a recent interview for Technology Review . However, Snir also implies that I believe higher level languages will make software engineers redundant. Actually, I never suggested that and certainly don't believe it. As I pointed out in my commentary, most of the domain specific and 4th generation languages are built on 3rd generation technology developed by the programming elite.

Snir does makes some interesting observations about the PGAS languages and the HPCS effort. In the process, the professor also gives us a treatise on an implementation language for HPC. This alone is worth a read.

Oddly enough, Snir circles back around to recognize that application specific languages do represent an important paradigm for HPC.

“High-level languages should match the application domain, not the architecture of the compute platform,” he says. “Developing high-level languages that satisfy the needs of HPC but are less convenient to use on more modest platforms is a waste of money.”

At that point, I'm not sure which side he's really arguing for. Read the article and decide for yourself.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This