Confronting Parallelism: The View from Berkeley

By Nicole Hemsoth

March 2, 2007

To explore the important new paper on the challenges of parallelism, “The View from Berkeley,” HPCwire talked with NERSC computer scientist John Shalf and David Patterson, professor of computer science at UC-Berkeley. Shalf and Patterson are among the co-authors of “The View from Berkeley.”

HPCwire: To what extent has the HPC community learned how to exploit hardware and software parallelism during the past 20 years? Where do things stand today?

Shalf: When the HPC community migrated from vector to parallel machines in the early 90s, the transition was extremely difficult for the first five years. Now, 80 percent to 90 percent of codes have made that transition to MPPs [massively parallel processors] and the community has developed a substantial portfolio of parallel numerical algorithms.

As things stand today, the HPC community has become accustomed to modest increases in system concurrency over the past 15 years. For that matter, the desktop community has become accustomed to virtually no parallelism. As clock frequencies stall, future performance improvements will depend on accelerating the pace of parallelism — doubling the concurrency of computer systems of all scales every 18 months! The assumptions on which the current generation of codes are founded will break very rapidly under this situation. The software changes necessary to ride this wave of exponentially increasing parallelism will be at least as substantial as the transition from vector to MPP systems.

Patterson: The industry is already betting on multicore for future improvements in computing performance. To use a football analogy, the computing industry has already thrown a “Hail-Mary” pass with the first round of multicore designs. The ball is in the air, but nobody is running yet. That's where things stand today.

HPCwire: Your report is called the “View from Berkeley.” What is the view from Berkeley about the challenges of future parallel architectures?

Patterson: The overarching challenge is that we need to find ways to make it easy to write programs that run efficiently on manycore systems. If we don't succeed, then the future of the IT industry looks clouded, because the industry will then face diminishing returns on the value of buying new computers with more cores.

We also offer opinions on good paths to pursue. First, RISC, not CISC. Assuming we can program them, the most efficient hardware in FLOPS per watt and FLOPS per dollar is simple single-issue pipelined cores. Second, manycore, not multicore. We think the target should be hundreds to thousands of simple cores per socket, not four or eight. Third, autotuners, not compilers. We think generating parallel code by dynamically exploring the options heuristically on that computer is a more promising path than producing code only via conventional compilers. Finally, human-centric, not machine-centric programming models. Psychological research on how people design and why people make mistakes shapes HCI [Human–computer interaction] research, but not programming models. We think we should rely on experimental research from psychology to guide future parallel programming models.

Shalf: Underlying all of the arguments laid out in the report is the belief that manycore chip design is our ultimate path forward for future computing systems. We aren't so much wild-eyed advocates for the multicore approach as we are realists. I think Kurt Keutzer, one of the lead authors on the report, sums this up best when he says “This shift toward increasing parallelism is not a triumphant stride forward based on breakthroughs in novel software and architectures for parallelism; instead, this plunge into parallelism is actually a retreat from even greater challenges that thwart efficient silicon implementation of traditional uniprocessor architectures.” If you don't accept Kurt's statement at face value, the report provides substantial arguments to turn your opinion around. If you accept that the future of computing is manycore, then the Berkeley View explores the ramifications of that assumption in detail.

Convergence toward manycore for mainstream chips is already apparent. There is the new NVIDIA CUDA GPU, which is moving from the highly specialized pixel and vertex processors of the previous generation of GPUs to 128 more general purpose cores. The recently announced Intel teraflop chip employs 80 simplified cores to hit one teraflop double-precision on a chip that consumes less than 70 watts. Cisco has moved away from its typical ASIC designs towards employing 192 Tensilica cores in the Metro chip, which is the heart of its new high-end CRS-1 router. The common thread is that using hundreds of simpler cores is more power-efficient than attempting to push the clock rate on a few complex cores.

HPCwire: Your new project is called RAMP. Can you tell us what RAMP is, and how it will help in the transition to more parallelism in future systems?

Patterson: RAMP stands for Research Accelerator for MultiProcessing. This project focuses on how can we build low cost, highly scalable hardware/software prototypes, given the increasing difficulty and expense of building hardware. A group of ten faculty members at six institutions (Berkeley, CMU, MIT, Stanford, Texas, and Washington) is exploring emulation of parallel systems via Field Programmable Gate Arrays (FPGAs). The idea is that although FPGAs are slower than real hardware, they are much, much faster than simulators. We believe they are fast enough for the parallel research community to use to evaluate novel ideas in parallel architecture, languages, libraries, and so on.

Despite the project being just 18 months old, we already have two interesting prototypes to demonstrate the potential of the project. For the RAMP Red prototype, Christos Kozyrakis of Stanford led the building of the first Transactional Memory computer using RAMP. This eight-processor system runs PowerPC Linux as the OS and runs SPLASH-2 benchmarks, the C-version of SpecJBB2000 (3-tier-like benchmark), and some AI apps. This single board system runs 100X faster than a simulator on an Apple 2GHz G5 (PowerPC). It should be able to scale to multiple boards relatively easily. In RAMP Blue, John Wawrzynek of UC Berkeley led the building of a message-passing computer using 256 MicroBlazes RISC cores provided by Xilinx, running on eight boards. We demonstrated it by running all the NAS benchmarks, written in UPC.

In both cases, the processors ran at 100 MHz. The RAMP emulation argument is that while this is, say, 20X slower than real hardware, it is plenty fast enough for researchers to run whole software stacks.

We also have a very low cost example. While the two RAMP projects used the BEE2 boards above, which cost about $10K, we also used the $300 XUP board from Xilinx to run full Debian Linux on a 32-bit SPARC processor that comes from an open source hardware group. You just grab the binaries and run them. It runs at 50 MHz. This group just created a multiprocessor version of the processor and a compatible version of Linux, so we expect to demonstrate very low-cost multiprocessors.

HPCwire: Do you think current scientific applications will scale to hundreds of thousands or processors?

Shalf: They have no choice. They have to scale to hundreds or thousands of processors if they have a need for increased performance. There are no alternatives waiting in the wings.

Patterson: It's a shocking statement, but the era of faster sequential processors is over. All hardware companies rely on parallelism for performance, and there are no plans for fast sequential processors.

HPCwire: What will be the biggest challenge for commercial applications – when future multicore chips arrive with 32 to 128 cores?

Shalf: The programming model for managing massive parallelism has been driven by the needs of the HPC community. As such, it has evolved in a manner that is extremely complex so that it could suit the needs of a handful of parallel programming experts. I don't think the current model is appropriate for a broader audience of software developers. In fact, the complexity and arduousness of existing parallel software development environments is leading to what can only be characterized as widespread panic in the mainstream software development community.

Many commercial software vendors are attempting to side-step this issue by questioning why such high concurrency is necessary in the first place. Why would a word processor or PowerPoint require 128 cores? Does that annoying talking paper clip really need more compute power? That point of view is very short-sighted and limited primarily by a lack of imagination. As someone once said, we won't be done until we match the capabilities of the computers we see in our favorite science fiction, so we have a long way to go.

Patterson: We get questions along the lines of, “What could you possibly run than needs 128 cores on a laptop?” This reminds me of the story of the patent examiner in 1870 who decided that everything of importance had been invented, so he quit his job to look for something permanent. Or that 640KB ought to be enough memory for PCs. We think the most exciting software has yet to be written, and it's going to be highly parallel.

HPCwire: At what point will the current programming paradigm begin to break down?

Shalf: It is already broken. Witness the hand-wringing over Blue Gene/L. And yet, with the current path we're on, the concurrency of Blue Gene will be eclipsed by the first petaflop-scale systems based on more conventional multicore desktop computing technology. If the industry moves to manycore, as our report suggests is our ultimate destination, then the concurrencies, represented as the number of cores, will expand by another order of magnitude.

Patterson: I agree with John. Threaded applications like J2EE are ready for lots of threads, so they'll be okay, at least for multicore servers, but it's not clear what is the right model with thousands of threads.

HPCwire: What attributes will the future programming model need?

Shalf: It has to be human-centric and focused on how users interact with systems. It has to be this way to reduce errors and to reduce uncertainty in the results when errors occur. There are the competing requirements of exposing all the features of the hardware so that experts can tune it, versus providing an elegant way of expressing the problem, such as domain-specific languages.

Often, computer scientists depend on introspection to design next-generation programming languages or the elements of new programming models. Tim Mattson of Intel pointed out to our group that when psychologists actually tested these assumptions, they often found the introspection to be dead wrong. Given that the process of programming is done by humans, it would be good to use the tools of psychology to pick apart that process.

Patterson: The “View from Berkeley” talks mainly about the process that John mentioned, but there are a few specifics that seem glaringly obvious. To maximize programmer productivity, programming models should be independent of the number of processors, allow programmers to use a richer set of data types and sizes, and they should support successful and well-known parallel models of parallelism: independent task parallelism, word-level data parallelism, and bit-level data parallelism.

HPCwire: How do you get people to move to a new paradigm when there's always some pain involved?

Shalf: People will adopt a new programming model only when their backs are against the wall. The rapid acceleration of system concurrency is going to press our backs against that wall in short order. When MPPs began to supplant the vector machines, scientific application developers explored alternative strategies including PVM, MPI, and eventually HPF to see which software ecosystem provided the right direction for the future. The MPI plus Fortran and C ecosystem has been stable for years due to relative stability in the underlying hardware platform. The hardware climate is about to change considerably, so the ecosystem is going to have to evolve to accommodate those changes.

HPCwire: With exponentially increasing concurrency, will some of today's “embarrassingly parallel” applications need to be renamed “humiliatingly parallel”?

Patterson: I've always been struck that we apologize when we do have success at parallelism. There is nothing wrong with task-level parallelism, like we see at Google. The fact that important codes like Monte Carlo or MapReduce are highly parallel is a good thing. We should change the labels to “successfully parallel” or “brilliantly parallel.”

Shalf: Attention to locality of communication is the essential feature that enables good scaling, and that can be very difficult to design. For instance, the Cactus Computational Toolkit, which has consumed a large fraction of my life as a contributing developer, scales efficiently to tens of thousands of processors, but it has very demanding communication requirements. It scales because the requirements are well localized by design – not because the communication is trivial.

I agree with Dave that we need to change the lexicon. It is neither embarrassing nor trivial to write scalable algorithms, nor should it be “humiliating” to employ algorithms that are naturally scalable.

HPCwire: To what extent will current algorithms and codes need to be fundamentally rethought and rewritten?

Patterson: In the past, it wasn't clear if it was worth the effort, as you could wait for faster uniprocessors. If you care about performance, there is now no choice but to parallelize. We also comment in the paper that in the past, programmers thought less than linear speedup on an MP was a failure. The new conventional wisdom is that given the universal switch to parallel computers, any speedup via parallelism is a success. Hence, now is the time to rethink and rewrite.

Shalf: The designs of current codes are founded on assumptions that are no longer true. This is natural. Nothing lasts forever.

HPCwire: How much can the HPC community be helped by other domains, such as embedded computing?

Patterson: To the surprise of the representatives of HPC and embedded computing in our group, there is more in common than either group expected. Both embraced parallelism long before the desktop computing community, and both seem more willing to change codes to embrace parallelism than the desktop community.

Shalf: The Cisco Metro chip and Blue Gene/L both provide examples of convergence toward manycore architecture, but they also point to a convergence between embedded and high-end computing technology. As Dave points out, the embedded and HPC worlds are not as far apart as originally thought, and the common need for more computationally efficient designs has pushed us even closer together. In the past, the desktop paradigm targeted performance at any cost. It was all about who could make the fastest processor. Two chief concerns going into the future are power consumption and cost effectiveness. While the desktop world is still in the process of turning their huge ship around, the embedded world has been concerned about optimizing cost and power consumption since its very inception! We have a lot to learn from the embedded computing industry.

Blue Gene is an excellent example of how the flow of innovation is starting to trickle upward from embedded computing to high-end computing rather than trickling down. This upward flow will increase in the future because the embedded folks know considerably more about power efficiency than the high-end computing market does.

Patterson: More specifically, as John says, the focus on energy efficiency is another common concern, as flops-per-watt are important for both battery life and to best use the limited power and cooling ability of a data center.

HPCwire: Can anything be done for legacy engineering codes that don't scale well and can't easily be rewritten because they've been certified based on years of experience and incremental refinements?

Shalf: I can appreciate that concern because I've spent some time as an engineer, and know how arduous the certification processes can be. Even in academic scientific applications such as numerical astrophysics, it takes years for a research group to convince themselves and their community that the code is producing credible answers. If they recode their applications, then they are subjected to a nontrivial revalidation process.

So, in short, it's going to be a real problem for them. We certainly don't have a magic bullet to offer. It's not even clear to me if the ultimate solution for them actually exists yet, even assuming they commit to recoding. The “View from Berkeley” report is identifying the future direction of computer architecture and defining a research agenda that matches the challenges that result from these changes. Since it is research, we are not claiming to have the answers a-priori. However, we are saying that failing to develop a good solution to these problems will guarantee failure for the industry as a whole.

HPCwire: How confident are you that the HPC community has the technical ability to overcome the challenges of increasing parallelism?

Patterson: If the HPC community doesn't have the technical ability, heaven help the hardware industry, which is betting its future on someone having this ability. I would think HPC has more people with experience at large scale parallelism than any other computing community. If this is not the case, then I think multicore will be another force pushing towards centralization of computing via software as a service. To put it simply, multicore and manycore are great for Google, even if it may be an exciting challenge to Microsoft.

Shalf: Necessity is the mother of invention. The HPC community is known to sustain considerable innovation in the face of sea changes in computer architecture. I'm not saying it won't be painful and potentially costly, but they can do it.

HPCwire: How confident are you that the HPC community has the will power to do this?

Shalf: It's not necessarily about will power. If they need more performance, there isn't some alternative architecture waiting in the wings to save them. Our current field of algorithms is a product of the machine architectures we have become familiar with. The fact that we will need to reopen this area of exploration is not unprecedented. That is not to say that good science only happens at massive concurrency – good science comes in all sizes. But if you need performance, massive parallelism is going to be the only game in town.

Patterson: This question sounds like there is a choice. If Bill Gates and his company don't have enough money to find alternatives to parallelizing their codes, then I'm pretty sure the HPC community doesn't have any alternatives either.

HPCwire: Can the HPC community mentor the larger IT market where parallelism is concerned?

Patterson: Absolutely. The HPC and embedded communities have the most experience at highly parallel systems, which is why we brought experts from those fields together to create the Berkeley View. We intend to continue to leverage that expertise in our plans to help show the larger IT market how to write programs that run efficiently on manycore systems.

—–

To learn more, go to http://view.eecs.berkeley.edu to see the wiki, blog, video of lectures, or YouTube-style video interview; or read the paper at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-158.pdf. To learn more about RAMP, visit http://ramp.eecs.berkeley.edu.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This