Math and Science Behind Blockbuster Movies

By Nicole Hemsoth

March 2, 2007

On Feb. 19 at the annual meeting of the American Association for the Advancement of Science in San Francisco, movie lovers got a behind-the-scenes glimpse at the physics-based simulations that breathe life into fantasy.

“It is an exhaustive task to prescribe the motion of every degree of freedom in a piece of clothing or a crashing wave,” says Ron Fedkiw, an assistant professor of computer science at Stanford who spoke about computations used to make solids and fluids more realistic in feature films. “Since these motions are governed by physical processes, it can be difficult to make these phenomena appear natural. Thus, physically based simulation has become quite popular in the special effects industry. The same class of tools useful for computational fluid dynamics is also useful for sinking a ship on the big screen.”

Fedkiw's talk was part of a symposium titled “Blockbuster Science: Math and Science Behind Movies and Entertainment,” which brings together leaders from industry and academia. The other speakers were Tony DeRose of Pixar in Emeryville, Calif., and Doug Roble of Digital Domain in Venice, Calif. Math Professor Tony Chan of the University of California-Los Angeles moderated the symposium.

Science at the Oscars

This year, two of the three movies nominated for a visual effects Oscar — Poseidon and Pirates of the Caribbean: Dead Man's Chest (which won the Oscar in this category), both made by Industrial Light & Magic (ILM) — required heavy numerical simulation, says Fedkiw, who has consulted for ILM for six years. Most recently, the PhysBAM (for Physics Based Modeling) core math engine he developed helped to create realistic water in Poseidon and Davy Jones' tentacles in Dead Man's Chest.

Computer graphics (CG) experts used to have to make a Catch-22 decision. They could run inferior algorithms on many processors or run the best algorithm on only one processor. The problem is that many algorithms do not scale well to larger numbers of processors. But about a year and a half ago Fedkiw figured out how to run a star algorithm on many processors, resulting in special effects unprecedented in their realism.

He designs new algorithms for diverse applications including computational fluid dynamics and solid mechanics, computer graphics, computer vision and computational biomechanics. The algorithms may rotate objects, simulate textures, generate reflections or mimic collisions. Or they may mathematically stitch together slices of a falling water drop, rising smoke wisp or flickering flame to weave realism into CG images.

Fedkiw received screen credits for his work on Poseidon, on Terminator 3: Rise of the Machines for the liquid terminator and the nuclear explosions and on Star Wars: Episode III — Revenge of the Sith for explosions in space battle scenes. “My first love is computational physics and most of my career has been dedicated to that,” says Fedkiw, who has published more than 75 research papers in computational physics, computer graphics and vision, as well as a book on level set methods with UCLA's Stanley Osher. Recently he has grown interested in applying computational physics to virtual surgery and modeling of the human face.

Fedkiw is the recipient of a National Academy of Sciences award for innovations in the modeling and numerical simulation of flows and pioneering contributions to physically based computer graphics. He also received a David and Lucile Packard Foundation fellowship for simulations of humans and a Presidential Early Career Award for Scientists and Engineers, the nation's highest honor for professionals at the outset of their independent research careers.

Going Hollywood

Research universities like Stanford play big roles in training the next generation of CG specialists and developing the science and technology that gets applied in movies in innovative ways.

“The simulation of gases, liquids and combustion for scientific reasons quickly translates into the ability to make animations of smoke, water and fire,” Fedkiw says. “Similar statements hold for soft biological tissues, muscles, fractures and other solid material problems. Once the scientific numerical simulations are worked out, interesting animations can be made shortly thereafter.”

Most of Fedkiw's students double-major in math and computer science. “Graphics itself is a bit less important, and many of them don't take their first graphics class until their junior or senior year of college,” Fedkiw says. “I started [learning computer graphics] rather late, working in pure mathematics until I was 23 years old, and then switching to applied mathematics after that. I didn't know anything about computer graphics until 1998. And although I did work on engineering-related problems, I didn't do any work in computer science until I started working with a company in 1998 to learn more about graphics.”

Fedkiw earned his doctorate in applied mathematics from UCLA in 1996 and did postdoctoral work at UCLA in mathematics and at Caltech in aeronautics before joining Stanford's Computer Science Department in 2000. He wrote his first two papers for the 2001 SIGGRAPH (short for Special Interest Group for Computer Graphics), an annual CG conference convened by the Association for Computing Machinery (ACM). In 2005, ACM SIGGRAPH honored him with its Significant New Researcher Award for contributions to the computer graphics community.

Getting research experience is important for anyone applying to Stanford's computer science doctoral program. “Connecting with a research group is quite important to do in addition to taking classes,” Fedkiw says. He and his students have worked closely with ILM, Pixar, Intel, Honda and Sony Imageworks. “This collaboration with industry is a two-way street and has produced a number of academic papers — as well as some screen credits,” he says. “Both the companies and group at Stanford think of this as a highly synergistic relationship.”

Fedkiw's favorite movie employing CG is Revenge of the Sith. “When I watched the first [Star Wars movie] at 9 years old, I never dreamed that I'd eventually be helping to make the last one.”

—–

Source: Stanford University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire