Purdue and Notre Dame to Link Supercomputers

By Nicole Hemsoth

March 2, 2007

The new year will usher in a new era for supercomputing at Purdue University and the University of Notre Dame. The institutions are partnering to create a sophisticated, high-performance computer grid – to be operational in January – that is expected to put northwest Indiana on the supercomputing map.

Congress has appropriated $6.5 million from the U.S. Department of Energy for the project in the past two years, including $5 million approved in late November. The effort was led by Sen. Richard Lugar, R-Ind., and U.S. Rep. Pete Visclosky, D-Ind., who represents the 1st Congressional District in northwest Indiana.

“These funds will bring a supercomputer network to Indiana on par with very few others in the country due to the high speed at which it operates,” Lugar said. “This investment in technology is important for many reasons, including the innovative research it will foster in enhancing the national security of the United States.”

Visclosky, who is the ranking member on the House Energy and Water Appropriations Subcommittee, said the funding for the Northwest Indiana Computational Grid is a key investment in the state’s high-tech economy.

“In order to build a new economy, we must have the high-technology infrastructure in place to attract the jobs of the future,” Visclosky said.

The grid, a network of fiber optics, will connect Purdue’s West Lafayette campus, Purdue Calumet in Hammond and Notre Dame in South Bend. The grid also will connect to U.S. government research facilities, including Argonne National Laboratory in Chicago. It eventually will be a gateway to other high-performance supercomputer grids throughout the country.

The collaboration is led by a steering committee of academic, technical and administrative experts from each of the three campuses.

James Bottum, vice president for information technology at Purdue West Lafayette, chairs the steering committee and said he is enthusiastic about the future of cyberinfrastructure in northwest Indiana.

“This partnership brings together two major research universities and a premier DOE laboratory in a regional collaboration that will generate new research opportunities and collaborations among students and faculty in the advancement of energy-related science,” he said.

Gordon Wishon, associate vice president/associate provost and chief information officer at Notre Dame, said the possibilities of the grid are immense.

“This collaboration will bring great capabilities to this part of the state of Indiana, which will certainly benefit our institutions, and we expect to benefit the entire state and nation as well,” he said.

Among the partnering institutions, the grid project exists within larger initiatives to boost high-performance computer capabilities. Notre Dame is developing a center for research computing support campuswide. At Purdue West Lafayette, the new Cyber Center has just been announced as part of the institution’s Discovery Park multidisciplinary research effort.

The Northwest Indiana Computational Grid will provide advanced computational resources to faculty, as well as high-performance computing capabilities to corporate and governmental users throughout the northwest Indiana region, said Doug Sharp, assistant vice chancellor for information and instructional technologies at Purdue Calumet. The grid will offer high-speed networking, high-performance computer clusters, simulation-based research capabilities, enhanced visualization and enormous data-storage resources.

Each campus will take the lead on a particular piece of the grid’s overall functionality. For example, Purdue West Lafayette will focus on high-speed processing, Notre Dame will focus on data-storage needs and Purdue Calumet will attend to the visualization needs for grid users.

“We’ll be able to be connected in a way that we haven’t been before,” Sharp said. “With the processing at West Lafayette, the storage at Notre Dame and the visualization at Calumet, the grid will work as one piece of technology by interconnecting these individual high-speed networks. And the relationship with Argonne is really like having a fourth partner. Therein lies the economy of this project – that we can all share our combined resources.”

The grid will be connected to Argonne and other grid-computing resources through StarLight, a fiber-optic cable network made possible through the National Science Foundation.

The collective power of the grid means that researchers at these northwest Indiana universities will have the tools to explore and address some of society’s most complex problems, Sharp said. For example, the grid will have the capacity to perform sophisticated computer modeling and simulation for chemical, biological and radiological dispersion during a terrorist attack. It will help authorities predict the spread of a toxic substance, determine the threat to the public and develop life-saving next steps. Another example involves the study and visualization of the inside of a blast furnace at a steel plant, examining heat prediction modeling to project – and hopefully prevent – dangerous and costly failures that can occur inside the furnace.

Jeff Kantor, vice president for research and graduate studies at Notre Dame, said the grid will boost research. The South Bend region is home to several leading orthopedic companies that have existing partnerships with both Purdue and Notre Dame.

“Having this kind of resource available to our region dramatically advances the research infrastructure,” Kantor said. “The design of orthopedic devices, from an engineering perspective, is an example of where we can lead with simulation studies and computations work that will be supported through the collaboration of the grid.”

Other applications include transportation and environmental studies for use in city planning, health-care management, biocomputing and the study of protein structures for synthesis of pharmaceuticals, and research in advanced carbon materials.

Chris Hoffmann, a computer science professor at Purdue West Lafayette with expertise in geometric computing and modeling, has done simulations of the Sept. 11, 2001, terrorist attack on the Pentagon. He previously used computational resources of another grid to complete these models, which took up to 68 hours to simulate one-fourth of a second of the actual events that day. He said the Northwest Indiana Computational Grid will bring exciting new prospects to his colleagues across the three campuses and will raise the bar of computational capability in Indiana.

“We want to be known as the place that has this expertise,” he said. “Simulation is the third paradigm of science, along with the theoretical and the experimental. Instead of running an experiment, we run a simulation by computations to see what will happen.”

The grid will be a tool for economic development with goals that support the state’s plans to focus on creating high-tech, high-wage and high-skills jobs. Some examples include aiding business incubators, such as the Purdue Technology Center of Northwest Indiana in Merrillville, to stimulate new high-tech companies and partnerships and supporting and improving the telecommunication sector, such as the St. Joe Valley MetroNet in the South Bend region. It also is likely to eventually benefit other campuses in the area, such as Purdue North Central.

“The infrastructure we put in place and the technology we apply will stimulate relationships that might not have occurred otherwise,” said Wishon, who also serves as chairman of the MetroNet board of directors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire