Our Manycore Future

By Michael Feldman

March 2, 2007

When I stop and think about the radical changes that computer architectures are undergoing today, it reminds me of that ancient proverb: “May your life be filled with many cores.” OK, I just made that up. The one that really applies is: “May you live in interesting times.” It is intended as both a blessing and a curse. But the proverb pretty much reflects the state of information technology today.

After half a century of domination, the unicore processor is an endangered species. Multicore processing is now mainstream. The future is massively parallel computing performed on manycore processors. That's the fundamental assumption underlying the recent report, “The Landscape of Parallel Computing Research: A View from Berkeley.” According to the authors of the paper, “Successful manycore architectures and supporting software technologies could reset microprocessor hardware and software roadmaps for the next 30 years.”

For a first-hand perspective on “A View from Berkeley,” read our feature interview with John Shalf and David Patterson, two of the authors of the report.

The creation of manycore architectures — hundreds to thousands of cores per processor — is seen by many as a natural evolution of multicore, as Moore's Law and nanoscale physics conspire to force chip designers to add transistors rather than increase processor clocks. If manycore is destined to be the way forward, a new parallel computing ecosystem will need to be developed, one that is very different from the environment that supports the current sequential and multicore processing systems. This is the subject of the Berkeley report.

“A View from Berkeley” delineates the state of parallel computing as it exists today and where it needs to go for our manycore future. In doing so I think they've put together one of the more valuable texts on the subject — valuable not because it claims to have all the answers, but because it manages to ask all the right questions.

One of the central issues discussed in the report is the type of hardware building blocks to be used for manycore systems. On this topic, the researchers take a reasonably definitive stand. They envision processors with thousands of simple (i.e., RISC) processing cores. The researchers argue that small, simple cores are the most efficient structures for parallel codes, providing the best tradeoff between energy consumption, performance and manufacturability. They point to the new 128-core NVIDIA GPUs and Cisco's 188-core Metro network processor as two early examples of this approach. The researchers also entertain the notion of heterogenous cores, but seem ambivalent about the tradeoffs between better code performance and system complexity, especially software complexity.

One of the more interesting areas the report explores is the convergence of computing that is taking place between the embedded and HPC markets. Once at opposite ends of the computing spectrum, embedded computing and HPC are being brought together by their common needs of energy efficiency, low-cost hardware building blocks, software reuse, and high-bandwidth data.

The IBM Blue Gene/L is one system that has some of its roots in the embedded world. The Blue Gene's low-power PowerPC-based processors are essentially embedded microcontrollers recast as HPC processors. A more recent version of an embedded-type HPC architecture is the SiCortex system, based on a chip containing six MIPS cores. It wouldn't be surprising to see some other HPC startups pick up this model.

Certainly the Berkeley folks aren't looking to CISC to achieve anything meaningful in a manycore architecture. Although Intel and AMD have done a remarkable job of driving up the performance/watt numbers for the CISC x86 architecture, the feasibility of using the x86 for manycore seems questionable. Just this week, a similar sentiment was reflected in an ITweek commentary by Martin Banks, who questioned the suitability of using x86 as a basis for scaled out systems. To balance that viewpoint, in early February, InfoWorld's Tom Yager penned a love letter to the quad-core Barcelona, noting how much AMD has achieved with energy efficiency and performance in its next generation Opteron.

Intel's own 80-core terascale prototype processor uses simple RISC-type cores to achieve a teraflop (in less than 70 watts!), although the company implied that commercial versions would support Intel Architecture-based cores. But even 80 cores is an order of magnitude less than that envisioned by the Berkeley researchers.

One of the other big issues the report addresses is the type of applications that will run on manycore systems. The authors believe parallel computing apps will be based on a set of 13 different computational methods — their so-called 13 Dwarfs. This consists of Phil Colella's original Seven Dwarfs from scientific computing, plus six more from other computing domains: embedded, general purpose, machine learning, graphics/games, databases, and Intel's recognition, mining and synthesis (RMS) applications.

It's conceivable that within a few short years, parallelized applications will dominate IT. One could make a case for that today with Internet-based applications like text searching, which are massively parallelized (albeit in a distributed model). Search engines represent one of the dominant applications today. Ten or fifteen years ago, the killer app was the word processor. Tomorrow, it may be a personal multimedia synthesizer.

But many people are concerned that only a small subset of applications can actually be parallelized to any meaningful degree. That's certainly true if you just look at current applications statically. For example, word processors are not compute limited to any extent. Even today's single core systems could happily calculate your tax returns in between keystrokes. But if word processing is going to evolve into a more compelling application, it will need to add capabilities such as voice recognition, next-generation language translation, and semantic analysis — features that are likely to require high degrees of parallelism. I would argue that only the most trivial end-user applications would not be able to take advantage of parallelism.

The real concern is how massive parallelism will be programmed. The Berkeley researchers believe that neither the sequential nor multicore programming models provide the right approach. A central precept for manycore programming is that the model should be independent of the number of processors. That's certainly not the case for applications implemented with MPI. Removing the dependency between the application and the processor/core count provides for automatic application scaling as succeeding microprocessor generations increase compute density. This would be a huge step in the right direction, bringing us back to the good old days when application performance automatically increased with every processor clock speed bump.

A related concern is productivity. A programming model must allow the software developer to balance the competing goals of productivity and implementation efficiency. Here, unfortunately, there is no consensus. The Berkeley report does some hand-waving about human-centric programming, expanding data types, and providing support for different types of parallelism, but the authors recognize that there's usually a tradeoff between ease of programming and runtime performance.

Our manycore future has an enormous upside, but the anxiety about it in the IT world is palpable. No single computing community, not even HPC, seems to have the breadth of expertise to attack this alone. But if you're a computer systems architect looking to change the world, these are indeed interesting times to be alive.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., is announcing a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascade Lake-AP) in t Read more…

By Tiffany Trader

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This