Our Manycore Future

By Michael Feldman

March 2, 2007

When I stop and think about the radical changes that computer architectures are undergoing today, it reminds me of that ancient proverb: “May your life be filled with many cores.” OK, I just made that up. The one that really applies is: “May you live in interesting times.” It is intended as both a blessing and a curse. But the proverb pretty much reflects the state of information technology today.

After half a century of domination, the unicore processor is an endangered species. Multicore processing is now mainstream. The future is massively parallel computing performed on manycore processors. That's the fundamental assumption underlying the recent report, “The Landscape of Parallel Computing Research: A View from Berkeley.” According to the authors of the paper, “Successful manycore architectures and supporting software technologies could reset microprocessor hardware and software roadmaps for the next 30 years.”

For a first-hand perspective on “A View from Berkeley,” read our feature interview with John Shalf and David Patterson, two of the authors of the report.

The creation of manycore architectures — hundreds to thousands of cores per processor — is seen by many as a natural evolution of multicore, as Moore's Law and nanoscale physics conspire to force chip designers to add transistors rather than increase processor clocks. If manycore is destined to be the way forward, a new parallel computing ecosystem will need to be developed, one that is very different from the environment that supports the current sequential and multicore processing systems. This is the subject of the Berkeley report.

“A View from Berkeley” delineates the state of parallel computing as it exists today and where it needs to go for our manycore future. In doing so I think they've put together one of the more valuable texts on the subject — valuable not because it claims to have all the answers, but because it manages to ask all the right questions.

One of the central issues discussed in the report is the type of hardware building blocks to be used for manycore systems. On this topic, the researchers take a reasonably definitive stand. They envision processors with thousands of simple (i.e., RISC) processing cores. The researchers argue that small, simple cores are the most efficient structures for parallel codes, providing the best tradeoff between energy consumption, performance and manufacturability. They point to the new 128-core NVIDIA GPUs and Cisco's 188-core Metro network processor as two early examples of this approach. The researchers also entertain the notion of heterogenous cores, but seem ambivalent about the tradeoffs between better code performance and system complexity, especially software complexity.

One of the more interesting areas the report explores is the convergence of computing that is taking place between the embedded and HPC markets. Once at opposite ends of the computing spectrum, embedded computing and HPC are being brought together by their common needs of energy efficiency, low-cost hardware building blocks, software reuse, and high-bandwidth data.

The IBM Blue Gene/L is one system that has some of its roots in the embedded world. The Blue Gene's low-power PowerPC-based processors are essentially embedded microcontrollers recast as HPC processors. A more recent version of an embedded-type HPC architecture is the SiCortex system, based on a chip containing six MIPS cores. It wouldn't be surprising to see some other HPC startups pick up this model.

Certainly the Berkeley folks aren't looking to CISC to achieve anything meaningful in a manycore architecture. Although Intel and AMD have done a remarkable job of driving up the performance/watt numbers for the CISC x86 architecture, the feasibility of using the x86 for manycore seems questionable. Just this week, a similar sentiment was reflected in an ITweek commentary by Martin Banks, who questioned the suitability of using x86 as a basis for scaled out systems. To balance that viewpoint, in early February, InfoWorld's Tom Yager penned a love letter to the quad-core Barcelona, noting how much AMD has achieved with energy efficiency and performance in its next generation Opteron.

Intel's own 80-core terascale prototype processor uses simple RISC-type cores to achieve a teraflop (in less than 70 watts!), although the company implied that commercial versions would support Intel Architecture-based cores. But even 80 cores is an order of magnitude less than that envisioned by the Berkeley researchers.

One of the other big issues the report addresses is the type of applications that will run on manycore systems. The authors believe parallel computing apps will be based on a set of 13 different computational methods — their so-called 13 Dwarfs. This consists of Phil Colella's original Seven Dwarfs from scientific computing, plus six more from other computing domains: embedded, general purpose, machine learning, graphics/games, databases, and Intel's recognition, mining and synthesis (RMS) applications.

It's conceivable that within a few short years, parallelized applications will dominate IT. One could make a case for that today with Internet-based applications like text searching, which are massively parallelized (albeit in a distributed model). Search engines represent one of the dominant applications today. Ten or fifteen years ago, the killer app was the word processor. Tomorrow, it may be a personal multimedia synthesizer.

But many people are concerned that only a small subset of applications can actually be parallelized to any meaningful degree. That's certainly true if you just look at current applications statically. For example, word processors are not compute limited to any extent. Even today's single core systems could happily calculate your tax returns in between keystrokes. But if word processing is going to evolve into a more compelling application, it will need to add capabilities such as voice recognition, next-generation language translation, and semantic analysis — features that are likely to require high degrees of parallelism. I would argue that only the most trivial end-user applications would not be able to take advantage of parallelism.

The real concern is how massive parallelism will be programmed. The Berkeley researchers believe that neither the sequential nor multicore programming models provide the right approach. A central precept for manycore programming is that the model should be independent of the number of processors. That's certainly not the case for applications implemented with MPI. Removing the dependency between the application and the processor/core count provides for automatic application scaling as succeeding microprocessor generations increase compute density. This would be a huge step in the right direction, bringing us back to the good old days when application performance automatically increased with every processor clock speed bump.

A related concern is productivity. A programming model must allow the software developer to balance the competing goals of productivity and implementation efficiency. Here, unfortunately, there is no consensus. The Berkeley report does some hand-waving about human-centric programming, expanding data types, and providing support for different types of parallelism, but the authors recognize that there's usually a tradeoff between ease of programming and runtime performance.

Our manycore future has an enormous upside, but the anxiety about it in the IT world is palpable. No single computing community, not even HPC, seems to have the breadth of expertise to attack this alone. But if you're a computer systems architect looking to change the world, these are indeed interesting times to be alive.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This