Our Manycore Future

By Michael Feldman

March 2, 2007

When I stop and think about the radical changes that computer architectures are undergoing today, it reminds me of that ancient proverb: “May your life be filled with many cores.” OK, I just made that up. The one that really applies is: “May you live in interesting times.” It is intended as both a blessing and a curse. But the proverb pretty much reflects the state of information technology today.

After half a century of domination, the unicore processor is an endangered species. Multicore processing is now mainstream. The future is massively parallel computing performed on manycore processors. That's the fundamental assumption underlying the recent report, “The Landscape of Parallel Computing Research: A View from Berkeley.” According to the authors of the paper, “Successful manycore architectures and supporting software technologies could reset microprocessor hardware and software roadmaps for the next 30 years.”

For a first-hand perspective on “A View from Berkeley,” read our feature interview with John Shalf and David Patterson, two of the authors of the report.

The creation of manycore architectures — hundreds to thousands of cores per processor — is seen by many as a natural evolution of multicore, as Moore's Law and nanoscale physics conspire to force chip designers to add transistors rather than increase processor clocks. If manycore is destined to be the way forward, a new parallel computing ecosystem will need to be developed, one that is very different from the environment that supports the current sequential and multicore processing systems. This is the subject of the Berkeley report.

“A View from Berkeley” delineates the state of parallel computing as it exists today and where it needs to go for our manycore future. In doing so I think they've put together one of the more valuable texts on the subject — valuable not because it claims to have all the answers, but because it manages to ask all the right questions.

One of the central issues discussed in the report is the type of hardware building blocks to be used for manycore systems. On this topic, the researchers take a reasonably definitive stand. They envision processors with thousands of simple (i.e., RISC) processing cores. The researchers argue that small, simple cores are the most efficient structures for parallel codes, providing the best tradeoff between energy consumption, performance and manufacturability. They point to the new 128-core NVIDIA GPUs and Cisco's 188-core Metro network processor as two early examples of this approach. The researchers also entertain the notion of heterogenous cores, but seem ambivalent about the tradeoffs between better code performance and system complexity, especially software complexity.

One of the more interesting areas the report explores is the convergence of computing that is taking place between the embedded and HPC markets. Once at opposite ends of the computing spectrum, embedded computing and HPC are being brought together by their common needs of energy efficiency, low-cost hardware building blocks, software reuse, and high-bandwidth data.

The IBM Blue Gene/L is one system that has some of its roots in the embedded world. The Blue Gene's low-power PowerPC-based processors are essentially embedded microcontrollers recast as HPC processors. A more recent version of an embedded-type HPC architecture is the SiCortex system, based on a chip containing six MIPS cores. It wouldn't be surprising to see some other HPC startups pick up this model.

Certainly the Berkeley folks aren't looking to CISC to achieve anything meaningful in a manycore architecture. Although Intel and AMD have done a remarkable job of driving up the performance/watt numbers for the CISC x86 architecture, the feasibility of using the x86 for manycore seems questionable. Just this week, a similar sentiment was reflected in an ITweek commentary by Martin Banks, who questioned the suitability of using x86 as a basis for scaled out systems. To balance that viewpoint, in early February, InfoWorld's Tom Yager penned a love letter to the quad-core Barcelona, noting how much AMD has achieved with energy efficiency and performance in its next generation Opteron.

Intel's own 80-core terascale prototype processor uses simple RISC-type cores to achieve a teraflop (in less than 70 watts!), although the company implied that commercial versions would support Intel Architecture-based cores. But even 80 cores is an order of magnitude less than that envisioned by the Berkeley researchers.

One of the other big issues the report addresses is the type of applications that will run on manycore systems. The authors believe parallel computing apps will be based on a set of 13 different computational methods — their so-called 13 Dwarfs. This consists of Phil Colella's original Seven Dwarfs from scientific computing, plus six more from other computing domains: embedded, general purpose, machine learning, graphics/games, databases, and Intel's recognition, mining and synthesis (RMS) applications.

It's conceivable that within a few short years, parallelized applications will dominate IT. One could make a case for that today with Internet-based applications like text searching, which are massively parallelized (albeit in a distributed model). Search engines represent one of the dominant applications today. Ten or fifteen years ago, the killer app was the word processor. Tomorrow, it may be a personal multimedia synthesizer.

But many people are concerned that only a small subset of applications can actually be parallelized to any meaningful degree. That's certainly true if you just look at current applications statically. For example, word processors are not compute limited to any extent. Even today's single core systems could happily calculate your tax returns in between keystrokes. But if word processing is going to evolve into a more compelling application, it will need to add capabilities such as voice recognition, next-generation language translation, and semantic analysis — features that are likely to require high degrees of parallelism. I would argue that only the most trivial end-user applications would not be able to take advantage of parallelism.

The real concern is how massive parallelism will be programmed. The Berkeley researchers believe that neither the sequential nor multicore programming models provide the right approach. A central precept for manycore programming is that the model should be independent of the number of processors. That's certainly not the case for applications implemented with MPI. Removing the dependency between the application and the processor/core count provides for automatic application scaling as succeeding microprocessor generations increase compute density. This would be a huge step in the right direction, bringing us back to the good old days when application performance automatically increased with every processor clock speed bump.

A related concern is productivity. A programming model must allow the software developer to balance the competing goals of productivity and implementation efficiency. Here, unfortunately, there is no consensus. The Berkeley report does some hand-waving about human-centric programming, expanding data types, and providing support for different types of parallelism, but the authors recognize that there's usually a tradeoff between ease of programming and runtime performance.

Our manycore future has an enormous upside, but the anxiety about it in the IT world is palpable. No single computing community, not even HPC, seems to have the breadth of expertise to attack this alone. But if you're a computer systems architect looking to change the world, these are indeed interesting times to be alive.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This