Rick Stevens: Connecting Computing to Science

By Michael Feldman

March 9, 2007

Perhaps the two most important technologies of the 21st century will be information technology and biotechnology. Certainly they have become the most rapidly expanding domains of our era. The advancements in devices such as microarray biochips, medical imaging, and mass spectrometers have created a wealth of biological data to be analyzed. The result is that, increasingly, biological problems now require large scale computing. In a sense, life science has become a sub-domain of information science.

Expressions such as bioinformatics, computational biology and systems biology are being used to describe this new integration. And research organizations are actively exploring problems within the intersection of biology and computer science.

At the Department of Energy's (DOE) Argonne National Laboratory, the Computing and Life Sciences (CLS) directorate is attempting to synergize these two technologies to fulfill the department's mission. At Argonne, the integration of computational science with systems biology is designed to help build basic scientific knowledge, solve environmental problems related to energy production, and develop and manage new energy sources.

Heading the CLS directorate is Rick Stevens, a man who seems perfectly suited for the type of interdisciplinary work that the organization is doing. There, he is able to indulge his deep interests in algorithms, math and science, especially biological science.

As a scientist, Stevens is hard to categorize. In fact, he himself is not a great believer in distinct scientific disciplines. According to him, calling yourself a biologist, a chemist or a computer science is a just way people self-identify with a community. But these disciplines have become a rather artificial way to view the world. There are just people and problems, he says.

“I've always been interested in trying to connect computing to science,” says Stevens. “But I'm not that interested in computing for computing's sake.”

As a kid, Stevens was very much attracted to computing as it was portrayed on Star Trek. In the 23rd century, computers were things you used to do exciting things, like computing wormhole trajectories. In the 21st century, we'll have to be satisfied with sub-warp applications. But that still leaves plenty to do.

According to Stevens, putting biology and computing under the same lab directorate is a kind of experiment. By forging these cross-cultural relationships, they want to see if the sum is greater than the parts. Since Stevens is personally aligned with this intersection of computing and biology, to him the challenges are not only some of the most interesting problems in the world, but also are just great fun.

As one might imagine, the life of the head of an DOE lab directorate can be rather intense. It's not unusual for Stevens to be up at 5:00 AM.  At that ungodly hour, he tries to pound out a little code, which he mostly writes in C, Perl, Python or Mathematica. He says he's also learning a little UPC.

“If I spend a couple of hours in the morning writing code, I'm a much more cheerful person the rest of the day,” notes Stevens.

He spends the remainder of the day managing the lab: cheerleading the staff, working with the funding agencies, and planning the direction of the lab work. He tries to reserve some time for himself to reflect on the big picture and think about the future.

But when things get onerous at the lab, Stevens retreats to his other job — as a professor of computer science at the University of Chicago. There you'll find him working with his five PhD students. With one exception they are all working on projects in computational biology.

Stevens seems to get the most out of both his roles. He says Argonne is a great place to get things done. It's a very high energy, very focused environment, and the people are extremely supportive. “We think of it as a cross between a university and a start-up company,” he says. On the other hand, he also enjoys the teaching culture and more free-wheeling atmosphere of the university. There, he's able to wander off and follow his interests, wherever they take him.

But one of the big advantages of working for the DOE is the access to big iron. As one of the department's leadership computing centers, Argonne is on a select list to receive the latest cutting-edge supercomputers. It is expected to get a 100 teraflop IBM Blue Gene machine sometime this year. In 2008, the lab is looking to deploy a 500 teraflop system. Stevens says the lab is on a trajectory to get a sustained petaflop and even beyond.

High-end capability supercomputing systems for life sciences have traditionally focused on biochemical modeling at the level of atoms and molecules. But, according to Stevens, that misses the complexity of the organism and interactions of the ecosystem. Lately, he has become interested in applying petascale power to systems biology problems. For example, modeling microbial soil habitats is a vast computational undertaking, but promises to help us understand one of the most complex and important ecosystems on the planet.

Another promising use of petascale systems involves building models of cells that incorporate genetic information. This will allow scientists to predict a cell's response to different environment and substrates, and perform computational what-if questions to understand design tradeoffs in natural or man-made biological systems. For example, this type of application could be used to model highly efficient ethanol-producing microorganisms for different nutritional substrates.

“To understand the dynamics of how something works, you have to execute a simulation on a computer,” explains Stevens. “There's no other way to do it. So in many ways, doing theory in biology is going to be equivalent to doing these complex simulations. That's an insight that is just starting to hit lots of people.”

The computing power required to pursue some of these problems already exists today. As teraflop systems become available to more people, the opportunity for scientists to do interesting systems biology is exploding. While the hardware continues to become more accessible, building the models is the hard part.

“We don't have enough people with a background in computing and mathematics and, at the same time, with a background in biology, to actually wire these two things together,” he says. “Most bioinformatics programs are too superficial. Because of that we have a lack of models.”

The lack of expertise in computational biology may be holding back the field, but futurist and inventor Ray Kurzweil probably considers that problem just background noise. If there's anyone more bullish than Rick Stevens on the potential of computer science and biology, it's Kurzweil. His notion of “Singularity” is the predicted outcome of merging immense computational power with human beings, precipitating “a technological change so rapid and profound it represents a rupture in the fabric of human history.” Not surprisingly, Kurzweil's prediction of a transhumanist world draws its share of controversy.

“Ray has a hugely optimistic vision of where humanity could go,” says Stevens “What he's try to say is that the future could be so unbelievably cool that we should all want to get there. He's thinking in terms of exponentials and trying to understand the effects of extrapolation. The question is: How good are we at predicting the outcome of complex questions where there are underlying exponential drivers, like Moore's Law?”

“Is there merit to this view of the world?” continues Stevens. “Well, probably. It's been well understood that people have a hard time thinking in exponentials. This is a classical futurist viewpoint, whether it is understanding population increases, global warming, pollution or whatever. People are very bad at making predictions. They tend to over estimate in the near term and under estimate in the long term. What this means is that Ray could very well be correct that in 10 to 20 years, the convergence of these underlying technologies will enable many, many things to be different. Now, if he just simply said that, I don't think anyone would disagree.”

The fact is, Kurzweil is making a more precise prediction: achieving Singularity in 2045. According to Stevens, that's where he gets sort of quasi-theological. What Kurzweil is essentially arguing is that the technological juggernaut will take us to this brave new world regardless of the specific technologies in play. In other words, it's not a function of Moore's Law, network bandwidth, storage capacity, bioimaging technology, microarray chips or any number of rapidly growing technologies; it's the exponential rate of technology itself.

Stevens sums it up as follows: “To solve problems you need three things — time, money and ideas. If you have two, you can compensate for the other one. Kurzweil collapses time and money because of exponential processes. What's left are the ideas.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This