Rick Stevens: Connecting Computing to Science

By Michael Feldman

March 9, 2007

Perhaps the two most important technologies of the 21st century will be information technology and biotechnology. Certainly they have become the most rapidly expanding domains of our era. The advancements in devices such as microarray biochips, medical imaging, and mass spectrometers have created a wealth of biological data to be analyzed. The result is that, increasingly, biological problems now require large scale computing. In a sense, life science has become a sub-domain of information science.

Expressions such as bioinformatics, computational biology and systems biology are being used to describe this new integration. And research organizations are actively exploring problems within the intersection of biology and computer science.

At the Department of Energy's (DOE) Argonne National Laboratory, the Computing and Life Sciences (CLS) directorate is attempting to synergize these two technologies to fulfill the department's mission. At Argonne, the integration of computational science with systems biology is designed to help build basic scientific knowledge, solve environmental problems related to energy production, and develop and manage new energy sources.

Heading the CLS directorate is Rick Stevens, a man who seems perfectly suited for the type of interdisciplinary work that the organization is doing. There, he is able to indulge his deep interests in algorithms, math and science, especially biological science.

As a scientist, Stevens is hard to categorize. In fact, he himself is not a great believer in distinct scientific disciplines. According to him, calling yourself a biologist, a chemist or a computer science is a just way people self-identify with a community. But these disciplines have become a rather artificial way to view the world. There are just people and problems, he says.

“I've always been interested in trying to connect computing to science,” says Stevens. “But I'm not that interested in computing for computing's sake.”

As a kid, Stevens was very much attracted to computing as it was portrayed on Star Trek. In the 23rd century, computers were things you used to do exciting things, like computing wormhole trajectories. In the 21st century, we'll have to be satisfied with sub-warp applications. But that still leaves plenty to do.

According to Stevens, putting biology and computing under the same lab directorate is a kind of experiment. By forging these cross-cultural relationships, they want to see if the sum is greater than the parts. Since Stevens is personally aligned with this intersection of computing and biology, to him the challenges are not only some of the most interesting problems in the world, but also are just great fun.

As one might imagine, the life of the head of an DOE lab directorate can be rather intense. It's not unusual for Stevens to be up at 5:00 AM.  At that ungodly hour, he tries to pound out a little code, which he mostly writes in C, Perl, Python or Mathematica. He says he's also learning a little UPC.

“If I spend a couple of hours in the morning writing code, I'm a much more cheerful person the rest of the day,” notes Stevens.

He spends the remainder of the day managing the lab: cheerleading the staff, working with the funding agencies, and planning the direction of the lab work. He tries to reserve some time for himself to reflect on the big picture and think about the future.

But when things get onerous at the lab, Stevens retreats to his other job — as a professor of computer science at the University of Chicago. There you'll find him working with his five PhD students. With one exception they are all working on projects in computational biology.

Stevens seems to get the most out of both his roles. He says Argonne is a great place to get things done. It's a very high energy, very focused environment, and the people are extremely supportive. “We think of it as a cross between a university and a start-up company,” he says. On the other hand, he also enjoys the teaching culture and more free-wheeling atmosphere of the university. There, he's able to wander off and follow his interests, wherever they take him.

But one of the big advantages of working for the DOE is the access to big iron. As one of the department's leadership computing centers, Argonne is on a select list to receive the latest cutting-edge supercomputers. It is expected to get a 100 teraflop IBM Blue Gene machine sometime this year. In 2008, the lab is looking to deploy a 500 teraflop system. Stevens says the lab is on a trajectory to get a sustained petaflop and even beyond.

High-end capability supercomputing systems for life sciences have traditionally focused on biochemical modeling at the level of atoms and molecules. But, according to Stevens, that misses the complexity of the organism and interactions of the ecosystem. Lately, he has become interested in applying petascale power to systems biology problems. For example, modeling microbial soil habitats is a vast computational undertaking, but promises to help us understand one of the most complex and important ecosystems on the planet.

Another promising use of petascale systems involves building models of cells that incorporate genetic information. This will allow scientists to predict a cell's response to different environment and substrates, and perform computational what-if questions to understand design tradeoffs in natural or man-made biological systems. For example, this type of application could be used to model highly efficient ethanol-producing microorganisms for different nutritional substrates.

“To understand the dynamics of how something works, you have to execute a simulation on a computer,” explains Stevens. “There's no other way to do it. So in many ways, doing theory in biology is going to be equivalent to doing these complex simulations. That's an insight that is just starting to hit lots of people.”

The computing power required to pursue some of these problems already exists today. As teraflop systems become available to more people, the opportunity for scientists to do interesting systems biology is exploding. While the hardware continues to become more accessible, building the models is the hard part.

“We don't have enough people with a background in computing and mathematics and, at the same time, with a background in biology, to actually wire these two things together,” he says. “Most bioinformatics programs are too superficial. Because of that we have a lack of models.”

The lack of expertise in computational biology may be holding back the field, but futurist and inventor Ray Kurzweil probably considers that problem just background noise. If there's anyone more bullish than Rick Stevens on the potential of computer science and biology, it's Kurzweil. His notion of “Singularity” is the predicted outcome of merging immense computational power with human beings, precipitating “a technological change so rapid and profound it represents a rupture in the fabric of human history.” Not surprisingly, Kurzweil's prediction of a transhumanist world draws its share of controversy.

“Ray has a hugely optimistic vision of where humanity could go,” says Stevens “What he's try to say is that the future could be so unbelievably cool that we should all want to get there. He's thinking in terms of exponentials and trying to understand the effects of extrapolation. The question is: How good are we at predicting the outcome of complex questions where there are underlying exponential drivers, like Moore's Law?”

“Is there merit to this view of the world?” continues Stevens. “Well, probably. It's been well understood that people have a hard time thinking in exponentials. This is a classical futurist viewpoint, whether it is understanding population increases, global warming, pollution or whatever. People are very bad at making predictions. They tend to over estimate in the near term and under estimate in the long term. What this means is that Ray could very well be correct that in 10 to 20 years, the convergence of these underlying technologies will enable many, many things to be different. Now, if he just simply said that, I don't think anyone would disagree.”

The fact is, Kurzweil is making a more precise prediction: achieving Singularity in 2045. According to Stevens, that's where he gets sort of quasi-theological. What Kurzweil is essentially arguing is that the technological juggernaut will take us to this brave new world regardless of the specific technologies in play. In other words, it's not a function of Moore's Law, network bandwidth, storage capacity, bioimaging technology, microarray chips or any number of rapidly growing technologies; it's the exponential rate of technology itself.

Stevens sums it up as follows: “To solve problems you need three things — time, money and ideas. If you have two, you can compensate for the other one. Kurzweil collapses time and money because of exponential processes. What's left are the ideas.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire