Compilers and More: Industrial Strength Interprocedural Analysis

By Michael Wolfe

March 16, 2007

Standard compiler optimization is no longer sufficient for competitive high performance computing. Here we discuss interprocedural analysis (IPA) or whole program analysis, its costs and benefits, and how it affects programmers.

Performance-sensitive programmers are accustomed to building their applications with compiler optimizations enabled. In the past, this might have been as simple as setting the -O option on the command line. Decades of research and experience on compiler analysis and code improvement have produced mature, reliable techniques, the vast majority of which focus on optimizing a single procedure at a time, using redundancy elimination, loop restructuring, register allocation, instruction scheduling, and so on. But it is not enough.

Current highly optimizing compilers all use some form of interprocedural or whole program analysis for best performance. At compile time, the compiler summarizes each procedure in the program; when all procedures are available, the compiler invokes an interprocedural analysis module to collect all the procedure summaries and propagates information from caller to callee and back. While this seems to break the advantages of separate compilation, it is done at link time. The procedures are then optimized using the new interprocedural information. Early implementations used programming environments or special build programs to manage the procedure summaries, which made it hard to migrate from traditional tools, such as make. Current methods are almost invisible, except for the extra time spent at the link step to generate better code using the extra information.

The importance of interprocedural analysis is demonstrated by looking at the SPEC CPU results page (http://www.spec.org/); the base flags for the various compilers all include IPA:

    IBM -O5 (implies -qipa)
    Intel -fast (implies -ipo)
    Pathscale -Ofast (implies -ipa)
    PGI -fast -Mipa=fast,inline
    SGI -Ofast=ip35 (implies -IPA)
    Sun -fast -xcrossfile

We ran the SPEC CPU2000 test suite using the PGI compiler with and without IPA. The performance improvements ranged up to 130 percent speedup, with a 7 percent speedup in the overall geometric mean, demonstrating that IPA is useful and critical to the performance of some applications.

One of the most useful and common benefits of IPA is automatic inlining of procedures, even across source files. Since the compiler has the whole program at link time, it can take a procedure from one object and inline it at a call site in another procedure. This typically reduces the cost of the procedure call, and allows the code for the inlined procedure to be better optimized since the calling context is explicit.

This can also be used to inline or generate special code for calls to system or math libraries. Until link time, it isn’t always known what library a particular procedure will come from. Once it is known that fmax is resolved from libm.a, for instance, the compiler can replace the procedure call by fast inline code.

A less common technique is to create two or more versions of a procedure, each version optimized for a particular calling context. For instance, IPA may generate one version or clone to be optimized for the case when two C pointer arguments are known to be distinct, allowing more vectorization (for instance), and another version for the more general case. The compiler can be directed to replace some calls to the more optimized version where appropriate.

IPA can help optimize around procedure calls even when the call isn’t inlined. IPA may be able to determine that the function is “pure,” meaning that it does no I/O and doesn’t read or write global variables. Code around calls to such functions can be moved above or below the call, since the call won’t interfere with any other code in the caller. This gives the compiler more freedom when scheduling instructions or allocating registers.

Another very common and simple benefit of IPA is recognizing when a procedure argument always has the same value, and replacing the argument by that value to optimize the procedure. The value may be a constant integer, used as a loop limit or in a conditional expression, allowing more aggressive loop optimization or removal of the condition. For C pointer arguments, the value may be an array; using the array directly allows more precise alias analysis, with much of the same benefits as using the C99 ‘restrict’ qualifier. If the constant value is propagated to the procedure, then the caller doesn’t even need to pass that argument, making the procedure call slightly less expensive as well. Even when a procedure argument is not a single constant, it can be useful for the compiler to know when the value of an argument lies in a certain range, or that a pointer only aliases with a limited number of user arrays or variables.

For array arguments (or C pointers to arrays), it is useful on today’s machines to know the alignment of the argument. For instance, to use the packed (SSE) instructions on the x86 or x86-64 architectures, aligned loads can only be used if the data is known to be 16-byte aligned. Knowing the argument alignment allows better code generation for vectorized loops. For dynamically allocated arrays, this means knowing the return alignment of the memory allocation routines.

Modern Fortran includes multidimensional assumed-shape array arguments, which require so-called “dope vectors” to describe the bounds and strides for each dimension. In the general case, the compiler must read these dope vectors for each dimension for each access to the array. IPA can be used to propagate array shapes, replacing dope vector accesses by constant array bounds. This eliminates the dope vector memory accesses, and allows more constant folding at compile time.

Since IPA has a view of the whole program, it can be used to reorganize data in the program as well. One simple example is to reorder the members of a Fortran COMMON block to control the data alignment. This is only safe with IPA, since only then does the compiler know that all instances of the COMMON will be reordered the same way.

Each implementation of IPA is somewhat different. Some compilers depend on interprocedural optimization for performance, while others use IPA mostly to control function inlining. The cost for IPA is spent in program build time, in particular at link time. Some implementations defer essentially all optimization and code generation to link time. This makes the compiler seem quite fast, and the link very slow.

To be accepted by users, the interface to IPA must preserve the edit-compile-link-test development cycle currently in place. Users are unlikely to adopt a new program build mechanism, as proposed in various research projects. IPA must be able to analyze routines in subroutine libraries, which most vendors do not yet fully support. The compiler also needs to know the behavior of routines in the system library, such as ‘malloc’, I/O, and math routines.

Processor architectures have become quite aggressive, with deeply pipelined function units, superscalar instruction issue, out-of-order execution, and integrated vector/multimedia processing units, things which would never have been dreamed of as mainstream during the RISC revolution, for instance. The future offers multicore processors, with heterogeneous cores and function unit customization. Successful performance delivery depends on deep compiler analysis and optimization, which will become more dependent on interprocedural analysis. Bleeding edge programmers need to understand its benefits, potential, and limitations. As has always been true, the best performance is produced when the programmer and the compiler enter into a dialogue, which I will address in a future column.

SPEC (R) is a registered trademark of the Standard Performance Evaluation Corporation (http://www.spec.org/).

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This