Compilers and More: Industrial Strength Interprocedural Analysis

By Michael Wolfe

March 16, 2007

Standard compiler optimization is no longer sufficient for competitive high performance computing. Here we discuss interprocedural analysis (IPA) or whole program analysis, its costs and benefits, and how it affects programmers.

Performance-sensitive programmers are accustomed to building their applications with compiler optimizations enabled. In the past, this might have been as simple as setting the -O option on the command line. Decades of research and experience on compiler analysis and code improvement have produced mature, reliable techniques, the vast majority of which focus on optimizing a single procedure at a time, using redundancy elimination, loop restructuring, register allocation, instruction scheduling, and so on. But it is not enough.

Current highly optimizing compilers all use some form of interprocedural or whole program analysis for best performance. At compile time, the compiler summarizes each procedure in the program; when all procedures are available, the compiler invokes an interprocedural analysis module to collect all the procedure summaries and propagates information from caller to callee and back. While this seems to break the advantages of separate compilation, it is done at link time. The procedures are then optimized using the new interprocedural information. Early implementations used programming environments or special build programs to manage the procedure summaries, which made it hard to migrate from traditional tools, such as make. Current methods are almost invisible, except for the extra time spent at the link step to generate better code using the extra information.

The importance of interprocedural analysis is demonstrated by looking at the SPEC CPU results page (http://www.spec.org/); the base flags for the various compilers all include IPA:

    IBM -O5 (implies -qipa)
    Intel -fast (implies -ipo)
    Pathscale -Ofast (implies -ipa)
    PGI -fast -Mipa=fast,inline
    SGI -Ofast=ip35 (implies -IPA)
    Sun -fast -xcrossfile

We ran the SPEC CPU2000 test suite using the PGI compiler with and without IPA. The performance improvements ranged up to 130 percent speedup, with a 7 percent speedup in the overall geometric mean, demonstrating that IPA is useful and critical to the performance of some applications.

One of the most useful and common benefits of IPA is automatic inlining of procedures, even across source files. Since the compiler has the whole program at link time, it can take a procedure from one object and inline it at a call site in another procedure. This typically reduces the cost of the procedure call, and allows the code for the inlined procedure to be better optimized since the calling context is explicit.

This can also be used to inline or generate special code for calls to system or math libraries. Until link time, it isn’t always known what library a particular procedure will come from. Once it is known that fmax is resolved from libm.a, for instance, the compiler can replace the procedure call by fast inline code.

A less common technique is to create two or more versions of a procedure, each version optimized for a particular calling context. For instance, IPA may generate one version or clone to be optimized for the case when two C pointer arguments are known to be distinct, allowing more vectorization (for instance), and another version for the more general case. The compiler can be directed to replace some calls to the more optimized version where appropriate.

IPA can help optimize around procedure calls even when the call isn’t inlined. IPA may be able to determine that the function is “pure,” meaning that it does no I/O and doesn’t read or write global variables. Code around calls to such functions can be moved above or below the call, since the call won’t interfere with any other code in the caller. This gives the compiler more freedom when scheduling instructions or allocating registers.

Another very common and simple benefit of IPA is recognizing when a procedure argument always has the same value, and replacing the argument by that value to optimize the procedure. The value may be a constant integer, used as a loop limit or in a conditional expression, allowing more aggressive loop optimization or removal of the condition. For C pointer arguments, the value may be an array; using the array directly allows more precise alias analysis, with much of the same benefits as using the C99 ‘restrict’ qualifier. If the constant value is propagated to the procedure, then the caller doesn’t even need to pass that argument, making the procedure call slightly less expensive as well. Even when a procedure argument is not a single constant, it can be useful for the compiler to know when the value of an argument lies in a certain range, or that a pointer only aliases with a limited number of user arrays or variables.

For array arguments (or C pointers to arrays), it is useful on today’s machines to know the alignment of the argument. For instance, to use the packed (SSE) instructions on the x86 or x86-64 architectures, aligned loads can only be used if the data is known to be 16-byte aligned. Knowing the argument alignment allows better code generation for vectorized loops. For dynamically allocated arrays, this means knowing the return alignment of the memory allocation routines.

Modern Fortran includes multidimensional assumed-shape array arguments, which require so-called “dope vectors” to describe the bounds and strides for each dimension. In the general case, the compiler must read these dope vectors for each dimension for each access to the array. IPA can be used to propagate array shapes, replacing dope vector accesses by constant array bounds. This eliminates the dope vector memory accesses, and allows more constant folding at compile time.

Since IPA has a view of the whole program, it can be used to reorganize data in the program as well. One simple example is to reorder the members of a Fortran COMMON block to control the data alignment. This is only safe with IPA, since only then does the compiler know that all instances of the COMMON will be reordered the same way.

Each implementation of IPA is somewhat different. Some compilers depend on interprocedural optimization for performance, while others use IPA mostly to control function inlining. The cost for IPA is spent in program build time, in particular at link time. Some implementations defer essentially all optimization and code generation to link time. This makes the compiler seem quite fast, and the link very slow.

To be accepted by users, the interface to IPA must preserve the edit-compile-link-test development cycle currently in place. Users are unlikely to adopt a new program build mechanism, as proposed in various research projects. IPA must be able to analyze routines in subroutine libraries, which most vendors do not yet fully support. The compiler also needs to know the behavior of routines in the system library, such as ‘malloc’, I/O, and math routines.

Processor architectures have become quite aggressive, with deeply pipelined function units, superscalar instruction issue, out-of-order execution, and integrated vector/multimedia processing units, things which would never have been dreamed of as mainstream during the RISC revolution, for instance. The future offers multicore processors, with heterogeneous cores and function unit customization. Successful performance delivery depends on deep compiler analysis and optimization, which will become more dependent on interprocedural analysis. Bleeding edge programmers need to understand its benefits, potential, and limitations. As has always been true, the best performance is produced when the programmer and the compiler enter into a dialogue, which I will address in a future column.

SPEC (R) is a registered trademark of the Standard Performance Evaluation Corporation (http://www.spec.org/).

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This