Compilers and More: Industrial Strength Interprocedural Analysis

By Michael Wolfe

March 16, 2007

Standard compiler optimization is no longer sufficient for competitive high performance computing. Here we discuss interprocedural analysis (IPA) or whole program analysis, its costs and benefits, and how it affects programmers.

Performance-sensitive programmers are accustomed to building their applications with compiler optimizations enabled. In the past, this might have been as simple as setting the -O option on the command line. Decades of research and experience on compiler analysis and code improvement have produced mature, reliable techniques, the vast majority of which focus on optimizing a single procedure at a time, using redundancy elimination, loop restructuring, register allocation, instruction scheduling, and so on. But it is not enough.

Current highly optimizing compilers all use some form of interprocedural or whole program analysis for best performance. At compile time, the compiler summarizes each procedure in the program; when all procedures are available, the compiler invokes an interprocedural analysis module to collect all the procedure summaries and propagates information from caller to callee and back. While this seems to break the advantages of separate compilation, it is done at link time. The procedures are then optimized using the new interprocedural information. Early implementations used programming environments or special build programs to manage the procedure summaries, which made it hard to migrate from traditional tools, such as make. Current methods are almost invisible, except for the extra time spent at the link step to generate better code using the extra information.

The importance of interprocedural analysis is demonstrated by looking at the SPEC CPU results page (http://www.spec.org/); the base flags for the various compilers all include IPA:

    IBM -O5 (implies -qipa)
    Intel -fast (implies -ipo)
    Pathscale -Ofast (implies -ipa)
    PGI -fast -Mipa=fast,inline
    SGI -Ofast=ip35 (implies -IPA)
    Sun -fast -xcrossfile

We ran the SPEC CPU2000 test suite using the PGI compiler with and without IPA. The performance improvements ranged up to 130 percent speedup, with a 7 percent speedup in the overall geometric mean, demonstrating that IPA is useful and critical to the performance of some applications.

One of the most useful and common benefits of IPA is automatic inlining of procedures, even across source files. Since the compiler has the whole program at link time, it can take a procedure from one object and inline it at a call site in another procedure. This typically reduces the cost of the procedure call, and allows the code for the inlined procedure to be better optimized since the calling context is explicit.

This can also be used to inline or generate special code for calls to system or math libraries. Until link time, it isn’t always known what library a particular procedure will come from. Once it is known that fmax is resolved from libm.a, for instance, the compiler can replace the procedure call by fast inline code.

A less common technique is to create two or more versions of a procedure, each version optimized for a particular calling context. For instance, IPA may generate one version or clone to be optimized for the case when two C pointer arguments are known to be distinct, allowing more vectorization (for instance), and another version for the more general case. The compiler can be directed to replace some calls to the more optimized version where appropriate.

IPA can help optimize around procedure calls even when the call isn’t inlined. IPA may be able to determine that the function is “pure,” meaning that it does no I/O and doesn’t read or write global variables. Code around calls to such functions can be moved above or below the call, since the call won’t interfere with any other code in the caller. This gives the compiler more freedom when scheduling instructions or allocating registers.

Another very common and simple benefit of IPA is recognizing when a procedure argument always has the same value, and replacing the argument by that value to optimize the procedure. The value may be a constant integer, used as a loop limit or in a conditional expression, allowing more aggressive loop optimization or removal of the condition. For C pointer arguments, the value may be an array; using the array directly allows more precise alias analysis, with much of the same benefits as using the C99 ‘restrict’ qualifier. If the constant value is propagated to the procedure, then the caller doesn’t even need to pass that argument, making the procedure call slightly less expensive as well. Even when a procedure argument is not a single constant, it can be useful for the compiler to know when the value of an argument lies in a certain range, or that a pointer only aliases with a limited number of user arrays or variables.

For array arguments (or C pointers to arrays), it is useful on today’s machines to know the alignment of the argument. For instance, to use the packed (SSE) instructions on the x86 or x86-64 architectures, aligned loads can only be used if the data is known to be 16-byte aligned. Knowing the argument alignment allows better code generation for vectorized loops. For dynamically allocated arrays, this means knowing the return alignment of the memory allocation routines.

Modern Fortran includes multidimensional assumed-shape array arguments, which require so-called “dope vectors” to describe the bounds and strides for each dimension. In the general case, the compiler must read these dope vectors for each dimension for each access to the array. IPA can be used to propagate array shapes, replacing dope vector accesses by constant array bounds. This eliminates the dope vector memory accesses, and allows more constant folding at compile time.

Since IPA has a view of the whole program, it can be used to reorganize data in the program as well. One simple example is to reorder the members of a Fortran COMMON block to control the data alignment. This is only safe with IPA, since only then does the compiler know that all instances of the COMMON will be reordered the same way.

Each implementation of IPA is somewhat different. Some compilers depend on interprocedural optimization for performance, while others use IPA mostly to control function inlining. The cost for IPA is spent in program build time, in particular at link time. Some implementations defer essentially all optimization and code generation to link time. This makes the compiler seem quite fast, and the link very slow.

To be accepted by users, the interface to IPA must preserve the edit-compile-link-test development cycle currently in place. Users are unlikely to adopt a new program build mechanism, as proposed in various research projects. IPA must be able to analyze routines in subroutine libraries, which most vendors do not yet fully support. The compiler also needs to know the behavior of routines in the system library, such as ‘malloc’, I/O, and math routines.

Processor architectures have become quite aggressive, with deeply pipelined function units, superscalar instruction issue, out-of-order execution, and integrated vector/multimedia processing units, things which would never have been dreamed of as mainstream during the RISC revolution, for instance. The future offers multicore processors, with heterogeneous cores and function unit customization. Successful performance delivery depends on deep compiler analysis and optimization, which will become more dependent on interprocedural analysis. Bleeding edge programmers need to understand its benefits, potential, and limitations. As has always been true, the best performance is produced when the programmer and the compiler enter into a dialogue, which I will address in a future column.

SPEC (R) is a registered trademark of the Standard Performance Evaluation Corporation (http://www.spec.org/).

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This