UCSD, Venter Institute Launch Metagenomics Complex

By Nicole Hemsoth

March 16, 2007

Scientists and engineers at the University of California, San Diego and the J. Craig Venter Institute (JCVI) have flipped the virtual switch on the first cyberinfrastructure customized to serve the marine microbial metagenomics community. At the heart of the cyberinfrastructure is a new, high-performance computer and storage complex funded by the Gordon and Betty Moore Foundation and located in UC San Diego's Atkinson Hall, headquarters of the California Institute for Telecommunications and Information Technology (Calit2), a partnership of UC San Diego and UC Irvine.

The computer complex enables analysis of a vast array of biocomplexity data housed in the Community Cyberinfrastructure for Advanced Marine Microbial Research and Analysis (CAMERA). It includes environmental metagenomic and genomic sequence data, associated environmental parameters (“metadata”), precomputed search results, and cross-analysis of environmental samples. While end users can manipulate the data over the web or over dedicated optical circuits, CAMERA permits scientists to connect their local laboratory computers directly to the CAMERA database and tools using the National LambdaRail, Internet2's NewNet, or international optical circuits, resulting in up to a hundred-fold increase in bandwidth over the conventional shared Internet.

CAMERA has been in beta testing since January and today launched the first production version of its database and computational resources. Simultaneously, at a news conference held in Washington D.C., researchers announced the first scientific findings based on sequences and metadata deposited in CAMERA by JCVI's Global Ocean Sampling (GOS) Expedition. The findings are published as articles in the Oceanic Metagenomics collection in the March 2007 issue of PLoS Biology, including “CAMERA: A Community Resource for Metagenomics,” a four-page introduction to the project by JCVI's Rekha Seshadri, Saul Kravitz and Marvin Frazier, with Calit2's Larry Smarr and Paul Gilna [PLoS Biology, March 2007 | Volume 5 | Issue 3 | e75].

“A new cyberinfrastructure architecture is required to support the field of genomics as it transitions to the study of metagenomics,” said CAMERA principal investigator Larry Smarr, a professor of computer science and engineering at UC San Diego and director of Calit2. “The infrastructure will create a virtual domain for global data and knowledge sharing by this emerging research community.”

The Gordon and Betty Moore Foundation funded the CAMERA project in January 2006 with $24.5 million over seven years, building on its previous support for Venter's ambitious program to sequence marine microbes. “We asked Calit2 to join with us on this project because Larry Smarr and his National Science Foundation-funded OptIPuter team were already pioneering and prototyping infrastructure for large-scale, distributed scientific collaboration,” said JCVI founder and chairman, Craig Venter. “CAMERA's database and computational tools are truly global resources, and they will be accelerating and broadening what the community learns from the GOS Expedition and future metagenomic research efforts.”

“We are proud that UC San Diego can bring together the strengths of our world-renowned research units to create CAMERA's state-of-the-art cyberinfrastructure to support this important new scientific discipline,” said the university's Chancellor, Marye Anne Fox. CAMERA is being developed by Calit2 at UC San Diego in collaboration with the JCVI, the university's Center for Earth Observations and Applications (anchored by the Scripps Institution of Oceanography), the San Diego Supercomputer Center, and the University of California, Davis.

The CAMERA database is different from most other genomic repositories because it was designed to accommodate environmental metadata as well as the sequence data derived from DNA samples. Even before the production version went online, a beta release of the database had been accessed by over 240 research scientists and students at more than 40 U.S. institutions, as well as users in at least ten foreign countries. Access to the CAMERA resources is free; users who register agree to abide by the terms of the Convention on Biological Diversity, in recognition of the many international sources of the data housed in CAMERA.

The sequence data from the GOS study have also been deposited in the National Institutes of Health-funded public database GenBank, however CAMERA is designed with metagenomic researchers in mind. “If a scientist queries our database for a particular set of sequence data, he or she would also get back all the metadata associated with each metagenomic sequence read,” said Paul Gilna, executive director of CAMERA. “This is a very useful feature because the metadata could provide clues to understanding differences between microbial specimens, especially if you are comparing microbes that live in very different ocean environments. Our metadata, more generally, will serve to advance marine environmental biology and ecology research.”

Cyberinfrastructure

CAMERA builds on the NSF funded OptIPuter research project, which is prototyping a global-scale end-to-end cyberinfrastructure backplane, stretching from a high-resolution visualization cluster in the researcher's lab, over dedicated one- or ten-gigabit per second lightpaths on optical fiber, to remote data and compute servers that may be located next door or thousands of miles away. Over the next few years, the dedicated but reconfigurable optical connectivity will provide metagenomics researchers with the freedom to work with data objects that are orders-of-magnitude larger than those transmitted over the conventional shared Internet.

The tiled LCD visualization displays, known as OptIPortals, scale from tens of millions to hundreds of million pixels. They provide the end user with the “pixel real estate” needed to explore the complexities of metagenomic data. Developed by the Electronic Visualization Laboratory at the University of Illinois at Chicago and Calit2, they are already installed at the JCVI and UC San Diego, and more are now being installed in partner metagenomics labs at the University of Washington, San Diego State University, MIT and elsewhere, including several international labs.

The CAMERA data resides on servers located at Calit2's headquarters on the UC San Diego campus, including a large production server consisting of a 512-CPU cluster (approximately 5 trillion floating-point operations per second, or “teraflops”) with roughly 200 trillion bytes (“terabytes”) of dedicated storage, all built on the SDSC Rocks (http://www.rocksclusters.org) cluster configuration software. A separate server at Calit2 hosts tools for analyses, tools for transferring large data sets and applications, and also a web-based interface for the user community.

Data and Tools

In addition to data from the GOS Expedition, the CAMERA database includes metagenomic data from the Marine virome data collection from Forest Rohwer's group at San Diego State University, and the metagenomic data from the Hawaii Ocean Time Series Station ALOHA contributed by Ed DeLong's group at MIT. Today's release will also allow users to access or search 68 completed genomes from the 155 genomes included in the Moore Microbial Sequencing project being conducted at the JCVI. Large reference collections of relevant sequence data are available for search, including non-identical amino acids, microbial, viral, and fungal sequence and peptides, as well as sequences and peptides from microbial eukaryotes.

“Since CAMERA is designed to be a community-driven resource, we will routinely introduce additional data sets based on input and priorities set by the metagenomics community,” said Marv Fazier, VP for Research at JCVI and co-principal investigator on the CAMERA project. “Our plan is that in year two, the additional data will include further phases of GOS, additional members of the Moore 155 genome sets as they become available, the Department of Energy's Joint Genome Institute [JGI] metagenomic data sets, as well as the data from projects deposited at the National Institutes of Health's National Center for Biotechnology Information [NCBI].”

Researchers working on pre-release versions of the GOS data used initial analysis tools developed at the JCVI, including a number of variants of BLAST nucleotide and amino acid sequence search tools that were allied to a metadata export capability. Tools in the pipeline will allow users to upload metagenomic data and their metadata, do metagenomic and whole microbial genome annotation, and conduct phylogenetic analyses.

Building the User Community

Through its new user software portal, the CAMERA website (http://camera.calit2.net) allows the user community to learn about the project and access applications and data sets. Meanwhile, leaders of the project have attracted a global set of metagenomics researchers by organizing an annual international metagenomics conference series at Calit2 (http://www.calit2.net/metagenomics2007/). CAMERA has also attracted leaders from the community to form an external Scientific Advisory Board.

With today's initial release of CAMERA capabilities, says principal investigator Smarr, “we have arrived at the beginning. The CAMERA team has built the foundation for an innovative and powerful cyberinfrastructure supporting biological research globally, with plans to enhance its capabilities and build the scientific community it serves. This infrastructure will now serve as a template or model for other large scientific communities requiring such an extensive level of computing, networking, data sharing, and collaboration.”

Users interested in exploring and using the CAMERA resource should go to http://camera.calit2.net and follow the instructions for registration. Registration is free and open to all interested in using CAMERA in their research.

—–

Source: California Institute for Telecommunications and Information Technology; J. Craig Venter Institute

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This