Compilers and More: What To Do With All Those Cores?

By Michael Wolfe

April 6, 2007

I just returned from two small conferences, CGO (Code Generation and Optimization, http://www.cgo.org/) and PPoPP (Principles and Practice of Parallel Programming, http://www.ppopp.org/). One of the key themes in both conferences, perhaps the dominating theme, was that multicore chips are here, are mainstream, and we’d better figure out how to use them.

One of the PPoPP attendees, Prof. Rudolf Eigenmann (Purdue Univ.) issued an indictment, saying that we in the parallel programming research community should be ashamed of ourselves. Single-processor systems have run out of steam, something the parallel programming community has been predicting since I was a college student. Now is the time to step up and reap the benefits of all our past work. We’ve had 30 years to study this problem and come up with a solution, but what’s the end result? Surprise! We still have no well-accepted method to generate parallel applications.

We had a similar discussion at one of the workshops before CGO, where someone said that the programming problem would finally get solved because “now we’re motivated!” This implies either that the past thirty years of investigation was being done by the wrong people, or that perhaps now with more people looking at the problem, someone will randomly stumble on a good solution. Science at its best?

Dr. Andrew Chien (Intel), one of the PPoPP keynote speakers, took issue with Eigenmann’s criticism. Chien said that in fact we’ve had a great deal of success in parallel programming: just look at all the massively parallel systems and the applications that run on them. However, halfway through his talk was the slide “Wanted: Breakthrough Innovations in Parallel Programming.” I asked how he could claim past success, then state that breakthrough innovations are needed; it sounded like a typical manager: “good job, now get back to work.” He replied that in the past, parallel programming meant high performance. Now, parallel programming means spreadsheets, games, email, and applications on your laptop. It’s a different target environment, with a different class of programmer, and different expectations.

So parallel programming is hard. Hey, sequential programming is hard too. Adding parallelism just makes it harder. Two of the major problems are expressing the parallelism and synchronizing or communicating between the parallel threads or activities.

An approach to the synchronization problem that is gaining lots of traction is transactional memory, or TM. This takes a page from the successful database community, which has long had to deal with many processes simultaneously accessing and modifying a shared database. Rather than letting a process lock the database, the process executes a transaction; the transaction may involve adding, removing, or modifying relations in the database. While in the middle of a transaction, no other process can see the modifications; at the end, the process commits the results. The database then atomically exposes all the updates to the other processes. In particular, this lets multiple processes modify disjoint parts of the database in parallel without conflict. If two processes try to update the same data at the same time, the first commit will succeed, and the second will fail. The application then has to restart its transaction from the start, since it may have made some decisions based on values that are now stale.

Moving transactions to the parallel programming world means rather than updating shared data in a critical section, the model is to enter a transaction, perform the updates, then commit the changes. The implementation must buffer the modifications until the commit, then atomically commit all the modifications at once. As in a database, if some other parallel thread had made changes to the same shared data, the commit will fail, and the transaction must restart and retry. The expected behavior is that most transactions will succeed, so the retry overhead is quite low.

However, it’s still open as to how to implement the transaction buffering and commit. Modified caches could be used to buffer stores, unless you run out of associativity on the cache line. A separate transactional store queue could be designed, but the size of the queue would limit the size of the transaction.

There are other problems as well. Imagine two transactions, A and B, reading and modifying the same shared data. Suppose transaction B finishes and commits while A is still working. If transaction A then reads some data that was modified by B, A’s commit is likely to fail (in fact, may be guaranteed to fail), since some of the data it read was before B’s commit and some was read after. In fact, the inconsistency may cause A to generate a fault (suppose B allocated or freed a pointer), or loop infinitely; one speaker termed A a “zombie transaction,” the walking dead. It can be important to detect and kill zombies before they get to the commit state, to avoid spurious faults.

In managed software environments (think Java or C#), these problems can be handled in software, and transactions are likely to be successful there. However, it remains unclear how long it will be before transactions can migrate into HPC.

The architectural trends for multicore processing are still in flux as well. One idea is to build an array of small, low-power cores on the chip. Each core is slower on a single thread, but the array of cores could provide a great deal of job throughput. Andrew Chien pointed out that the single stream performance of a core grows roughly relative to the square root of the area, whereas the aggregate performance of a multicore chip grows linearly with the number of cores — a strong argument.

The Sun UltraSPARC T1 (Niagara) processor uses this strategy, with eight cores, each core swapping between four threads (much like the PPUs of the Control Data 6600, back in the late 1960s), giving very high throughput with significant power savings. This sacrifices single-thread performance, and Amdahl’s Law says this will affect parallel applications performance as well.

To solve that problem, some proposed designs use one or two aggressive, out-of-order, deeply pipelined, superscalar (large, power-hungry) cores surrounded by a sea of more tame, in-order, (smaller, power-frugal) cores. A parallel application would run mostly on the sea of slower cores, with the larger cores powered down. When entering a large sequential region on the critical path, the program would shift to the more powerful core.

This idea is not new, I first heard something similar 15 years ago or more, from Samuel Ho, a young PhD candidate at the University of Washington. At that time, he was proposing an Intel 486 surrounded by a bunch of 386s (which gives you the time frame), mostly for reduced cost. Today’s reduced power arguments are more compelling.

In some arenas, multicore has a well-established history. High end graphics processing units (GPUs) in personal computers and workstations have for years exposed a great deal of parallelism, and now look more like a collection of programmable processors with additional functional units, data types, and instructions geared for graphics problems. There are new efforts to expose GPU programming to the more general-purpose high performance market — the so-called GPGPU programming.

However, there are some important caveats. For instance, today’s GPUs implement floating point arithmetic, but only 32-bit precision, and not all the IEEE rounding modes. Some of the operations are not precise to the last ULP (Unit in the Last Place). That much precision isn’t needed in the graphics world, and this simplifies the GPU, making it smaller and faster.

The hardest nut to swallow is the graphics memory, which right now doesn’t implement ECC (error correcting code). With close to a gigabyte of memory, transient single-bit errors are quite possible, but again, in the graphics world, that will likely correspond to a slightly off-shaded pixel somewhere on the screen for one frame, so who cares? In your numerical simulation, that one bit could be a little more important, so perhaps this isn’t quite ready for life-critical applications.

My summary of all the hype for GPGPUs is that processors or coprocessors unconstrained by compatibility requirements, with the freedom to redesign to the latest technology, can deliver higher performance than general purpose CPUs. This is something we’ve known since the days of Floating Point Systems, with its attached FP processors. There are other coprocessors specifically designed for the high performance market, such as the Clearspeed board. GPUs are convenient for the budget-minded, because the development cost is paid for by the consumer games market.

So that’s what we have, and it’s up to you to figure out how to use it. High performance computing, as usual, is left with the crumbs off the table of the mass market.

Right now, we mostly think of multicore chips with 2 or 4 cores, even as Sun prepares the UltraSPARC T2 with 8 cores for release this fall. The sweet spot of high performance parallel computing has been in the range of 4 to 32 processors. Many applications do scale up beyond that, but hardware becomes much more complex to deliver scalable communication bandwidth, and software must be restructured to take advantage of all the parallelism without spending all its time waiting on remote data.

David Callahan (Microsoft Research) pointed out that exponential grows really fast. If we plan on doubling the number of cores on a chip every year or 18 months, it won’t be long before we have hundreds or thousands of cores on a chip. Any software solution aimed at 16 or 32 cores will quickly become irrelevant. We’d better be looking at productive ways to use massively parallel systems, since these may well find their way into our workstations, and yes, even our laptops, before the end of the next decade.

At one CGO panel, the moderator asked the audience whether new languages were needed for multicore. The response was somewhat tepid. It’s not clear that multicore is the reason for developing new languages. There are several research projects looking at designing or modifying languages specifically for developing scalable parallel applications.

Several of these project involve the so-called PGAS (Partitioned Global Address Space) languages. The main idea is the data is explicitly and visibly partitioned across the parallel machine, but any thread running on any node can fetch or store remote data directly. This promotes MPI-style programming, with most of the computation on local data, but exposes the communication as a language primitive instead of using opaque library calls. They try to get the advantages of HPF (High Performance Fortran), such as global addressability, without relying on unproven compiler technology.

DARPA, as part of its High Productivity Computing Systems (HPCS) project, is sponsoring the development of three new languages; see the HPCwire Q&A with Rusty Lusk for a summary. Recently I took a tutorial of IBM’s HPCS language, X10. It includes some of the PGAS ideas for parallelism, and allows for several ways to express parallelism at multiple levels beyond just data parallelism. It will be quite interesting to watch the evolution of these languages, but if this tutorial is indicative of their maturity, we have years of development before they are ready for real users.

So what’s the answer to the question in this article’s title? What DO we do with all those cores? The gold standard which we would like to achieve is to make them invisible. Upgrading to a multicore processor should be as simple and as effective as upgrading to a faster processor was in years past.

Previously, improvements to microarchitectural elements, such as branch prediction, out-of-order execution control units and pipelined functional units, were, for the most part, invisible from software. Instruction-set architectural changes, such as the SSE and SSE2 registers and instructions, were visible to the compiler, but largely hidden from the programmer.

Some architectural enhancements are significant enough that changing the program to take advantage of them is worth the effort. The packed SSE instructions on x86 processors and the vector instructions of classical supercomputers fall into this category. If we can make multicore processors no harder to use than this, we will have succeeded. The biggest barrier is that the architecture and the OS today present the multicore processor as indistinguishable from a multiprocessor. We need hardware and software mechanisms to allow compilers and developers to take advantage of these multicore chips as powerful processors. That is the next short-term challenge and will be the subject of a future column.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This