Revenge of the SMP?

By Michael Feldman

April 27, 2007

Lately it seems like I've been talking with people who see the multicore phenomenon as something of a cluster-buster. One of those people is Mike Hoskins, CTO of Pervasive Software, a company that develops database software technologies. Hoskins' reading of the tea leaves suggests that the trajectory of multicore processors is on a collision course with cluster computing. Essentially, the rationale is that as cores multiply on the chip, it makes more sense to build and program scaled-up SMP machines than scaled-out clusters.

Hoskins hopes this is the case. In general, his world of data-intensive computing has never been comfortable with the cluster and grid model. The technology heritage in this arena is mostly C and Java apps running on mainframes or big servers. Clusters and MPI programming are seen as fringe technologies. The clusters themselves are hard to deploy and administrate, while the programming model is primitive and not well-supported for commercial application development.

For Hoskins, the path of least resistance to bring data-intensive and compute-intensive computing into the Java universe is through SMP architectures. This week's feature article on Pervasive's Java framework looks at how cluster and multicore technologies are viewed from someone outside the traditional HPC community.

Hoskins tells a convincing story. Although the average multicore processor today is a dual-core chip, soon that will be quad-core. If we just follow a Moore's Law curve, a standard general-purpose processor will have 16 cores by the end of the decade. If you put four of those processors in an SMP box, you essentially have a machine that matches or exceeds the performance of most workgroup and departmental clusters today.

Since the workgroup and departmental systems are the fastest growing segment in HPC, a switch to SMP boxes would change the profile of the market fairly quickly. If multicore SMP systems cannibalize the low end of the cluster market, it will force clusters into the higher-end (but lower volume) capacity computing space.

It's no coincidence that vendors like Azul and Sun, who are pushing the multicore envelope more than most, are also big proponents of scaled up SMP boxes. Azul's 48-core Vega 2 chip is being used in their 768-way Compute Appliance, while Sun's 8-core, 32-thread UltraSPARC processor populates their T1000 and T2000 servers. And just last week, Sun announced first silicon for their new 16-core Rock processor. Since quad-core currently represents the upper end of x86 processors, more general-purpose, scaled-up machines are still on the drawing board. But SGI's f1240 server already offers a 48-core x86 SMP, which can be expanded up to 96 cores.

Beyond 2010, we can extrapolate core doublings into a manycore future, eventually squeezing capacity clusters up against supercomputing capability systems, until … poof, they disappear, never to be heard from again.

Or maybe not. Just as scaling nodes in a cluster has its problems, so does scaling cores and processors in a machine.

The biggest impediment to scale-up is the memory wall. Since SMP systems, by definition, share a common memory space, the data bandwidth into each processor, and then each core, is limited by memory system performance. As more cores compete for memory, each one has proportionally less bandwidth available to it. Memory technology isn't standing still, but RAM has only been doubling in speed every 10 years, well behind the 18-month Moore's Law doubling rate that is driving the multicore phenomenon. Technologies on the horizon to speed up memory access include 3D chip stacking (IBM), on-chip photonics (Intel) and proximity communication (Sun Microsystems). Whether any of these proves to be a practical solutions remains to be seen. But in the short term, the memory wall will act as a barrier to unconstrained SMP scale-up.

In addition, as you add more cores and processors to a system, system architects add additional RAM to keep computational performance balanced with memory capacity. But once you get up into terabytes of RAM, you have to start worrying about the likelihood of hard errors occurring with some frequency. Technologies such as memory scrubbing can deal with this, but the system cost is increased.

But the really big unknown is future HPC application demand for more performance. If applications that now run on low-end clusters don't change appreciably, the equivalent code will run on SMP workstations in a few years. But if those applications are limited by performance, they're likely to migrate to more powerful clusters as the nodes and interconnects ramp up in power.

Certainly in the bigger problems sets in HPC, like climate modeling or other types of large-scale simulations, the demand for more performance is almost insatiable. As you increase the time scales or resolutions of many models, the workloads scale relatively easily. But for commercial HPC applications, it's a mixed bag. Some problems are domain limited, for example, the genomic analysis of a bacterial pathogen. These types of applications don't scale. But many types of engineering simulations can scale as easily as climate models.

One thing did become clear to me in talking to Hoskins: There are users out there who would love to move into the high performance computing world, but are unwilling to migrate to cluster or grid computing because of the difficulty of the software model and the complexity of the system. For these people, multicore SMP systems are the answer.

——

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). On Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. Read more…

By Doug Black

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This