The Uncommodity Solution

By Michael Feldman

May 4, 2007

The current obsession with energy-efficient FLOPS in high performance computing systems has created a diversity of solutions in the last few years. The Cell processor and GPUs have been getting a lot of attention from the media, including yours truly. By offering hundreds of gigaflops at Wal-Mart prices, vendors and do-it-yourself HPC users are being tempted to experiment with these latest commodity accelerators.

With this as a backdrop, ClearSpeed has the unenviable task of offering floating point accelerators at $8000 a pop. Since high performance computing is the only market to which they aspire, the company lives in the relative anonymity of the HPC world. Not having the market breadth or sexiness of Cell processors, GPUs or FPGAs, ClearSpeed coprocessors are promoted on their technical prowess. If this were “Survivor,” ClearSpeed would have been kicked off the island a year ago. Fortunately this is reality IT, not reality TV.

Since the company was unveiling its new PCI Express-capable Advance board this week, along with some SDK and math library upgrades, I took the opportunity to get an update about the company's strategy to compete in a commodity-dominated industry. If you want to know more about ClearSpeed's new offerings, read their press release in this issue.

ClearSpeed does have an interesting tale to tell. One of the advantages of not being a commodity solution is not having to worry about consumer applications like PlayStations or PCs. ClearSpeed designs its coprocessors specifically for floating point speed and energy efficiency. In doing so, the company maintains it has the best performance/watt in the industry and it intends to keep that lead indefinitely.

What ClearSpeed offers today is a dual-coprocessor Advance board that tops out at 55 gigaflops (using a double-precision matrix multiplication benchmark). Each 10-watt CSX600 coprocessor provides 27.5 gigaflops, yielding 2.75 gigaflops/watt.

Compared to their commodity brethren, this might not seem like such a great feat. The latest NVIDIA GeForce 8800 GTX achieves 518.4 Gigaflops with 177 watts, yielding 2.93 gigaflops/watt. But the gigaflops in this case are single-precision FLOPS and are calculated for shader processing. Since there is no double-precision GPU on the market today (NVIDIA says it intends to offer one later this year), the comparison with the ClearSpeed offering is not yet relevant. AMD also has also not yet released a double-precision GPU product.

The Cell processor has a double-precision capability, but it's only a tenth or so of its single-precision performance. IBM is promising a much more capable double-precision version soon. Even the current version of the Cell processor provides a respectable 14.6 gigaflops of double-precision matrix multiplication with just 80 watts. This yields 0.18 gigaflops/watt, but that's less than a tenth of the performance of ClearSpeed's hardware.

FPGAs are another possibility for floating point. In general though, there's not enough real estate on the current implementations to allow for a lot of double-precision logic. At the present level of technology, you can squeeze between five to fifteen gigaflops on a single chip. But laying out the circuits to even do this requires a good deal of FPGA programming smarts. That doesn't keep HPC enthusiasts from trying though.

The fact that the CSX600 coprocessor is built on a 130nm process technology, while the GPUs, Cell chips, and the majority of FPGAs are built on 90nm, attests to ClearSpeed's skill in churning out the FLOPS with a relatively slow clock. The CSX600 contains 96 processing cores, which run at a rather modest 210 MHz.

Another advantage of the ClearSpeed coprocessors is accuracy. While no commercial FP device is fully “conformant” to the IEEE 754 floating point specification, ClearSpeed is compliant with the rounding conventions. On the other hand, while the Cell and GPUs are compatible with IEEE 754 floating point numerical formats, they don't do 754-type rounding. Values are just truncated in the hardware.

“When you think about their [GPUs and Cell processors] design criteria, which is to put pixels on a screen, whether it's for a Sony PlayStation or for graphics on a computer, it was certainly sufficient,” explained Peter ffoulkes, ClearSpeed's Director of Outbound Marketing. “But it's not sufficient when you're looking at some of the math applications, particularly for double-precision and high accuracy types of applications. When Cell and GPUs go to 64 bits, they may well chose to implement more of the IEEE 754 specification.”

“Even if they do implement everything properly, we feel that we're going to have a substantial advantage in performance/watt,” ffoulkes added. “They won't be able to get anywhere near [us].”

Hooking coprocessors into standard x86 servers can yield an interesting type of efficiency. ClearSpeed points out that by adding floating point horsepower in a server using a single Advance board, they were able to demonstrate a power reduction in the x86 component that made up for a significant chunk of the board's power consumption. In essence they were able to realize an extra 34 gigaflops of performance with just 6 additional watts of power compared to the base system — in this case an HP server with dual-core Xeon processors. Presumably this happened because the the Xeons could run a lot cooler once relieved of their floating point duties.

The company calls this the “Top Up” perspective, which sounds like a marketing ploy, but it does point to an extra efficiency that can be gained from accelerator add-ons. It's comparable to the sort of synergy you get with gas-electric hybrid cars, where the electric component improves the efficiency of the gas engine. After spending close to $50 to put 12 gallons into my car, I kind of wish ClearSpeed would start designing automobiles. High performance ones of course.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This