The Uncommodity Solution

By Michael Feldman

May 4, 2007

The current obsession with energy-efficient FLOPS in high performance computing systems has created a diversity of solutions in the last few years. The Cell processor and GPUs have been getting a lot of attention from the media, including yours truly. By offering hundreds of gigaflops at Wal-Mart prices, vendors and do-it-yourself HPC users are being tempted to experiment with these latest commodity accelerators.

With this as a backdrop, ClearSpeed has the unenviable task of offering floating point accelerators at $8000 a pop. Since high performance computing is the only market to which they aspire, the company lives in the relative anonymity of the HPC world. Not having the market breadth or sexiness of Cell processors, GPUs or FPGAs, ClearSpeed coprocessors are promoted on their technical prowess. If this were “Survivor,” ClearSpeed would have been kicked off the island a year ago. Fortunately this is reality IT, not reality TV.

Since the company was unveiling its new PCI Express-capable Advance board this week, along with some SDK and math library upgrades, I took the opportunity to get an update about the company's strategy to compete in a commodity-dominated industry. If you want to know more about ClearSpeed's new offerings, read their press release in this issue.

ClearSpeed does have an interesting tale to tell. One of the advantages of not being a commodity solution is not having to worry about consumer applications like PlayStations or PCs. ClearSpeed designs its coprocessors specifically for floating point speed and energy efficiency. In doing so, the company maintains it has the best performance/watt in the industry and it intends to keep that lead indefinitely.

What ClearSpeed offers today is a dual-coprocessor Advance board that tops out at 55 gigaflops (using a double-precision matrix multiplication benchmark). Each 10-watt CSX600 coprocessor provides 27.5 gigaflops, yielding 2.75 gigaflops/watt.

Compared to their commodity brethren, this might not seem like such a great feat. The latest NVIDIA GeForce 8800 GTX achieves 518.4 Gigaflops with 177 watts, yielding 2.93 gigaflops/watt. But the gigaflops in this case are single-precision FLOPS and are calculated for shader processing. Since there is no double-precision GPU on the market today (NVIDIA says it intends to offer one later this year), the comparison with the ClearSpeed offering is not yet relevant. AMD also has also not yet released a double-precision GPU product.

The Cell processor has a double-precision capability, but it's only a tenth or so of its single-precision performance. IBM is promising a much more capable double-precision version soon. Even the current version of the Cell processor provides a respectable 14.6 gigaflops of double-precision matrix multiplication with just 80 watts. This yields 0.18 gigaflops/watt, but that's less than a tenth of the performance of ClearSpeed's hardware.

FPGAs are another possibility for floating point. In general though, there's not enough real estate on the current implementations to allow for a lot of double-precision logic. At the present level of technology, you can squeeze between five to fifteen gigaflops on a single chip. But laying out the circuits to even do this requires a good deal of FPGA programming smarts. That doesn't keep HPC enthusiasts from trying though.

The fact that the CSX600 coprocessor is built on a 130nm process technology, while the GPUs, Cell chips, and the majority of FPGAs are built on 90nm, attests to ClearSpeed's skill in churning out the FLOPS with a relatively slow clock. The CSX600 contains 96 processing cores, which run at a rather modest 210 MHz.

Another advantage of the ClearSpeed coprocessors is accuracy. While no commercial FP device is fully “conformant” to the IEEE 754 floating point specification, ClearSpeed is compliant with the rounding conventions. On the other hand, while the Cell and GPUs are compatible with IEEE 754 floating point numerical formats, they don't do 754-type rounding. Values are just truncated in the hardware.

“When you think about their [GPUs and Cell processors] design criteria, which is to put pixels on a screen, whether it's for a Sony PlayStation or for graphics on a computer, it was certainly sufficient,” explained Peter ffoulkes, ClearSpeed's Director of Outbound Marketing. “But it's not sufficient when you're looking at some of the math applications, particularly for double-precision and high accuracy types of applications. When Cell and GPUs go to 64 bits, they may well chose to implement more of the IEEE 754 specification.”

“Even if they do implement everything properly, we feel that we're going to have a substantial advantage in performance/watt,” ffoulkes added. “They won't be able to get anywhere near [us].”

Hooking coprocessors into standard x86 servers can yield an interesting type of efficiency. ClearSpeed points out that by adding floating point horsepower in a server using a single Advance board, they were able to demonstrate a power reduction in the x86 component that made up for a significant chunk of the board's power consumption. In essence they were able to realize an extra 34 gigaflops of performance with just 6 additional watts of power compared to the base system — in this case an HP server with dual-core Xeon processors. Presumably this happened because the the Xeons could run a lot cooler once relieved of their floating point duties.

The company calls this the “Top Up” perspective, which sounds like a marketing ploy, but it does point to an extra efficiency that can be gained from accelerator add-ons. It's comparable to the sort of synergy you get with gas-electric hybrid cars, where the electric component improves the efficiency of the gas engine. After spending close to $50 to put 12 gallons into my car, I kind of wish ClearSpeed would start designing automobiles. High performance ones of course.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire