Compilers and More: Precision and Accuracy

By Michael Wolfe

May 11, 2007

According to Wikipedia, precision is defined in engineering and science as the degree of agreement among a series of individual measurements or results. For instance, if I measure my height (nonmetrically) five days in a row and come up with 73.8″, 73.5″, 73.75″, 73.7″ and 73.6″, I could state that I’m just over 6 feet tall. The precision of the measurements is about three tenths of an inch, the range of the measurements.

Accuracy is the degree of agreement of a measure value with the actual value. If you know the actual value, you hardly need to measure it, except perhaps to determine the accuracy of the measuring tool. If you don’t know the actual value, you might infer the accuracy of the measurement from the precision of your measurements, if you believe your measuring tool is reasonably accurate. When asked, I usually say I’m 6’2″ tall, which is reasonably accurate, though not exact.

In computing, we use precision in two ways. One is the number of bits in the representation of the mantissa of a floating point number; for instance, single-precision IEEE floating point gives 24 bits of precision (counting the hidden bit for normalized numbers), about 7 decimal digits; double-precision (or full precision, as numerical analysts used to call it) provides 53 bits of precision, about 15 decimal digits.

We also use precision as a measure of how many of these bits are correct. For instance, if I represent a very precise measurement of 1.000100 as a single precision number, then subtract 1.0 from that, the floating point result is 1.000000E-4; since the original measurement was only precise to seven digits, this difference is only precise to three digits, despite being represented with 7 digits. As another simple example, try summing 1/i in single precision where i ranges from 1 to 10,000,000; then sum the numbers in the other order, from 1/10,000,000 to 1/1; here, the answers differ in the second digit. The computations are mathematically identical, but computationally different, because of the limited accuracy of the computer floating point representation. The key is the order of computations can change the floating point answers, due to differences in the order and magnitude of rounding, itself due to the limited size of the representation. Numerical analysts earn a living determining how accurate and precise a computed answer is, and how to formulate the computation to improve accuracy and precision. The rest of us address the problem by going to double precision and hoping for the best.

It’s well known that a compiler can change the order of computations, and yes, this can affect the answers delivered. This dates back at least to the early days of vectorizing compilers for the Texas Instruments ASC, Control Data Cyber 205, and Cray 1. The simplest example was the way a summation is accumulated in vector mode. In our simple example, we showed two orders (forward and backward). These vector computers accumulated some number of intermediate partial sums, then add up the partial sums for a final result. The Cray compiler, for instance, would accumulate a sum in groups of 64 partial sums, the length of the vector register. The Cyber 205 would accumulate eight partial sums, the pipeline depth of the floating point adder. In all cases, the compiler had a flag to preserve the same floating point computation order, but that could be significantly slower.

This is not just historically interesting; many current processors have multimedia or SIMD instruction set extensions, such as the SSE and SSE2 instructions on the Intel and AMD x64 processors. Current compilers use the same code generation scheme to vectorize summations as compilers did 30 years ago for vector machines, though the ‘vector length’ may be only 2 or 4, the size of the multimedia registers.

In addition, a language definition may allow some freedom of evaluation order. Fortran allows a compiler to evaluate any mathematically equivalent expression, provided that parentheses are not violated. C does not even protect parenthesized subexpressions, explicitly allowing reassociation and even redistribution of multiply over addition.

Why this matters

It’s also well known that floating point operations, in spite of gigahertz clocks, functional unit pipelines and all the other architectural magic, are relatively slow. Multiplication is slower than addition, and division or square root is up to ten times slower than that. For those in the high performance world, reducing the multiply count, or replacing multiplication by addition, or, even better, replacing division by multiplication can give a big performance boost. It’s hard to underestimate the importance of benchmark performance in the world of compiler and processor vendors, where bragging rights, pricing, and sales can all depend on a particular benchmark or suite.

So let’s take the case of a particular benchmark, Gromacs, from the SPEC CPU2006 suite. This benchmark has a large number of single precision square root function calls, many of which are in the denominator, such as 1.0/sqrt(rsq11). Several current microprocessors have an instruction to approximate a single-precision inverse square root, such as the PowerPC (AltiVec), the Intel (SSE) and AMD (3D-Now! and SSE). In all cases, the instruction gives a low precision approximation, about half the number of bits. One Newton-Raphson iteration is enough to improve the result to full precision.

Such a technique is well known; the Cray 1 implemented a reciprocal approximate instead of a divide instruction, requiring the compiler to generate the Newton-Raphson iteration to generate a full precision result. This allowed divides to be vector pipelined without undue hardware requirements.

The performance of the square root and divide units are so slow that doing the reciprocal square root approximate instruction, followed by a Newton-Raphson iteration involving four multiplies and a substract, is still quite a bit faster. In some applications (graphics, for example), full precision may be overkill anyway, so perhaps the approximation by itself is sufficient.

So, all is well, right?

The problem is that one iteration of Newton-Raphson is enough to bring the approximation to full precision, except for the last ULP (unit in the last place) or two. This means that using the optimized code in this benchmark generates slightly different results than the standard code that uses a library or full-precision square root and divide instructions.

So, are the answers right or not?

This is tough question, perhaps one that doesn’t make sense. Recall that there’s a certain amount of roundoff error for any computer floating point arithmetic, so the answer is “wrong” whichever way you compute this value. Moreover, the computation is probably based on some initial data that was measured or approximated and so doesn’t have that much precision to start with.

So, are the answers okay or not?

As long as the programmer and the user realize and agree with the limitations of the generated code, yes, they are okay. There are really only two problems. In the history of floating point arithmetic, we’ve had a myriad of floating point formats, from base 16 to two, with or without rounding, with wildly varying dynamic range. In the 1980s, IEEE sponsored an effort to standardize on floating point formats, which all current mainstream processors use. This means that the answers computed on one brand processor, be it AMD, IBM, or Intel, are going to be the same as on any other brand, such as Motorola, MIPS, or SPARC. But here, we’re changing the computation, so the first problem is that answers on different hardware will be close, but may no longer be exactly the same.

The other problem has to do with the programmer and user agreeing with the limitations. Compilers that implement this performance optimization will enable or disable it under programmer control, usually with a command-line option (for those of us still using command lines). The issue is what’s the default? Would you like to specify an additional option to relax the precision of these operations, or specify an additional option to maintain their precision? This is largely a marketing question, though having an option to ‘maintain precision’ makes one wonder what the default behavior is.

As with all SPEC CPU2006 benchmarks, Gromacs checks that the computed answers are correct. However, the check is weak enough that the reciprocal square root approximation is good enough; the Newton-Raphson iteration isn’t even necessary. And yes, some of those SPEC submissions use this “optimization” in their peak numbers. Beware! Dragons lurk here!

Perhaps compilers could take another step and provide an option that would aggressively reorder and reassociate operations, and in general play heck with the floating point rounding properties of the program. If you run your program in standard and reordered mode and the answers are the same, you could have some degree of confidence that the language, the compiler, and the hardware did nothing bad to your computation (though the physics, of course, is up to you). However, if the answers differed wildly, then perhaps you need to bring in that numerical analyst to determine just what makes your program so sensitive.

As clock rates peak, we will explore ever more bizarre mechanisms to improve performance. There’s a lot of buzz about GPGPUs (General Purpose computing on Graphics Processing Units), which are cheap and fast, but which don’t (yet) implement all the IEEE rounding modes. We could quickly degrade into a world much like 20 years ago, where you must consider the hardware floating point representation and implementation before choosing your hardware.

Precision control can also affect performance. Recent numerical library work at Oak Ridge National Labs and the University of Tennessee uses the fact that single precision (32-bit) floating point operations run much faster than double precision on many current processors. The packed SSE instructions on the x64 processors, for instance, can do twice as many 32-bit operations per cycle. This encourages them to redesign their libraries to do the bulk of the work in single precision, then to use iterative refinement in double precision to provide a high precision result with low precision speed.

On the other hand, some scientists are concerned about how quickly roundoff error accumulates when performing peta-operations, perhaps reducing the number of significant digits to zero. Eighteen years ago, David Bailey and others predicted that IEEE double precision floating point would run out of bits as problem sizes increased, and suggested that hardware 128-bit floating point would be needed. Perhaps those SSE registers will soon be holding a single value.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This