Filling the Gap

By Michael Feldman

May 11, 2007

The dance between computer hardware and software has been going on for fifty years. In times past though, the relationship was kept at arm's length. The hardware engineers just cranked out the chips and threw them over the fence to the programmers. With the coming of multicore processors, the hardware/software connection has become more intimate. Chipmakers realize that multicore architectures are going to fundamentally change the software model. So if they want to move product, they have to narrow the gap between the hardware and the applications.

And this is happening. To one degree or another, Intel, IBM, AMD, NVIDIA are all partnering with ISVs and research organizations, providing early access to hardware, software support and training. The chipmakers have introduced software support, in the form of compilers and processor interface libraries, to help tool developers bring up code on their hardware. IBM offers an SDK and other tools for the Cell processor; AMD has introduced its “Close to Metal” program for GPU programming; and NVIDIA has its CUDA platform for their GPUs. Although I'm not going to talk much about multicore x86 software support in this article, Intel has a wide range of commercial products, software tools, and educational initiatives to help developers wrap their minds around multicoredness.

In high performance computing, the strategy is beginning to pay off. The most recent example of this is how rapidly development environments appeared for the relatively new IBM Cell BE and general-purpose GPU processors. The chips from the fab were barely cool before PeakStream and RapidMind delivered application development platforms for the new accelerator devices. If these products are successful, they will help create an important synergy between the chip vendors and the software developers.

Using GPUs and Cell processors as stream processing accelerators is creating a good deal of excitement in the HPC crowd. Hardly a week goes by when there's not at least one announcement of someone using these processors to speed up their application. Target workloads include 3D visualization, broadcast encoding, medical imaging, multimedia content generation, image and signal processing, financial analysis, seismic analysis, large-scale database transactions and enterprise search. This corresponds to almost any data-intensive application that requires lots of computational muscle. The broad applicability of these multicore accelerators for HPC has attracted the attention of software developers who would love to exploit this relatively cheap source of hardware.

In announcing their platform this week, RapidMind claimed support for the IBM Cell processor and the latest NVIDIA and AMD/ATI GPUs for high performance computing applications. The company says multicore x86 support is not far behind. Our feature article this week talks about how the RapidMind platform is targeting the hardware-agnostic application developer for these emerging architectures.

Academicians are also taking a hard look at the newer multicore accelerators. At the University of Tennessee (UT), Jack Dongarra and the team at the Innovative Computing Laboratory have been working with the IBM Cell processor. At their lab, a PlayStation3 (PS3) cluster of four systems is being used as a research platform for scientific computing. For the price of around $2400, they have built a system that offers 600 gigaflops (single-precision floating point) of peak performance. Although the PS3 was never designed to be a cluster node for a high performance computing system, its price and ubiquity have attracted HPC folks looking for cheap FLOPS. The UT team is evaluating programming models for the PS3 cluster and is looking at some of the limitations of the architecture for high performance computing.

In the process, the UT researchers have produced a technical report on using the PlayStation 3 as an HPC platform called “A Rough Guide to Scientific Computing On the PlayStation 3” (http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf). Less glib than an “IBM Cell Programming For Dummies” but more accessible than your average technical report, the guide should be required reading for developers who are new to technical computing on the Cell processor.

The guide outlines the Cell chip and PS3 hardware capabilities, the system software support available, and how to set up a lab-sized PS3 cluster. It also delves into programming techniques and offers some real-world examples. One of the more useful aspects of the guide is that it discusses a number of commercial and academic software platforms for the Cell architecture. Not meant to be the last word on Cell/PS3 software development, the report manages to give a balanced overview of the technologies currently available. Here's a clip from the introduction:

“As exciting as it may sound, using the PS3 for scientific computing is a bumpy ride. Parallel programming models for multi-core processors are in their infancy, and standardized APIs are not even on the horizon. As a result, presently, only hand-written code fully exploits the hardware capabilities of the CELL processor. [Editor's note: RapidMind would certainly dispute this.] Ultimately, the suitability of the PS3 platform for scientific computing is most heavily impaired by the devastating disproportion between the processing power of the processor and the crippling slowness of the interconnect, explained in detail in section 9.1. Nevertheless, the CELL processor is a revolutionary chip, delivering ground-breaking performance and now available in an affordable package. We hope that this rough guide will make the ride slightly less bumpy.”

The report contains a good discussion of the limitations of the PS3 for scientific computing including the memory bandwidth and capacity, the network interconnect speed, and shortcomings of the floating point implementation. These issues are discussed in more technical detail in a companion report: Limitations of the PlayStation 3 for High Performance Cluster Computing (http://www.netlib.org/utk/people/JackDongarra/PAPERS/ps3-summa-2007.pdf).

Some of the floating point weaknesses that limit the Cell's use in scientific computing are going to be addressed in future generations of the processor. According to the UT report, IBM is planning to pump up the double-precision performance from 14 to 102 gigaflops in the next implementation — no word if IEEE 754 floating point support issues will be addressed as well.

GPUs have similar floating point limitations. If NVIDIA and AMD want to penetrate the technical computing market with GPUs, they're going to have to make some decisions about floating point capabilities on these devices. Neither vendor offers any double precision hardware today, and IEEE 754 compliance is still a work in progress. However, NVIDIA's newest G80 device has included some support for rounding modes, overflow and NaN. (For a good discussion of floating point precision issues, read Michael Wolfe's article in this week's Feature section.)

The question here is how far will NVIDIA and AMD evolve their GPU architectures away from their graphics roots in order to support scientific floating point capabilities. The GPU engineers will also have to consider memory error correction and lower power consumption to offer a more robust HPC solution.

The market should be able to figure out how to balance this tension between application requirements and hardware capabilities. Although I've expressed my doubts about the capitalistic approach to cutting-edge supercomputing, that's not the case for commercial HPC. If GPUs and Cell processors were not applicable to industrial HPC applications, companies like PeakStream and RapidMind wouldn't exist, and researchers like Jack Dongarra would probably be working on something else. If the HPC software community figures out how to leverage the current generation of multicore hardware and starts to build a user base, the chipmakers will dance a little closer to the software.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failu Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This