Filling the Gap

By Michael Feldman

May 11, 2007

The dance between computer hardware and software has been going on for fifty years. In times past though, the relationship was kept at arm's length. The hardware engineers just cranked out the chips and threw them over the fence to the programmers. With the coming of multicore processors, the hardware/software connection has become more intimate. Chipmakers realize that multicore architectures are going to fundamentally change the software model. So if they want to move product, they have to narrow the gap between the hardware and the applications.

And this is happening. To one degree or another, Intel, IBM, AMD, NVIDIA are all partnering with ISVs and research organizations, providing early access to hardware, software support and training. The chipmakers have introduced software support, in the form of compilers and processor interface libraries, to help tool developers bring up code on their hardware. IBM offers an SDK and other tools for the Cell processor; AMD has introduced its “Close to Metal” program for GPU programming; and NVIDIA has its CUDA platform for their GPUs. Although I'm not going to talk much about multicore x86 software support in this article, Intel has a wide range of commercial products, software tools, and educational initiatives to help developers wrap their minds around multicoredness.

In high performance computing, the strategy is beginning to pay off. The most recent example of this is how rapidly development environments appeared for the relatively new IBM Cell BE and general-purpose GPU processors. The chips from the fab were barely cool before PeakStream and RapidMind delivered application development platforms for the new accelerator devices. If these products are successful, they will help create an important synergy between the chip vendors and the software developers.

Using GPUs and Cell processors as stream processing accelerators is creating a good deal of excitement in the HPC crowd. Hardly a week goes by when there's not at least one announcement of someone using these processors to speed up their application. Target workloads include 3D visualization, broadcast encoding, medical imaging, multimedia content generation, image and signal processing, financial analysis, seismic analysis, large-scale database transactions and enterprise search. This corresponds to almost any data-intensive application that requires lots of computational muscle. The broad applicability of these multicore accelerators for HPC has attracted the attention of software developers who would love to exploit this relatively cheap source of hardware.

In announcing their platform this week, RapidMind claimed support for the IBM Cell processor and the latest NVIDIA and AMD/ATI GPUs for high performance computing applications. The company says multicore x86 support is not far behind. Our feature article this week talks about how the RapidMind platform is targeting the hardware-agnostic application developer for these emerging architectures.

Academicians are also taking a hard look at the newer multicore accelerators. At the University of Tennessee (UT), Jack Dongarra and the team at the Innovative Computing Laboratory have been working with the IBM Cell processor. At their lab, a PlayStation3 (PS3) cluster of four systems is being used as a research platform for scientific computing. For the price of around $2400, they have built a system that offers 600 gigaflops (single-precision floating point) of peak performance. Although the PS3 was never designed to be a cluster node for a high performance computing system, its price and ubiquity have attracted HPC folks looking for cheap FLOPS. The UT team is evaluating programming models for the PS3 cluster and is looking at some of the limitations of the architecture for high performance computing.

In the process, the UT researchers have produced a technical report on using the PlayStation 3 as an HPC platform called “A Rough Guide to Scientific Computing On the PlayStation 3” (http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf). Less glib than an “IBM Cell Programming For Dummies” but more accessible than your average technical report, the guide should be required reading for developers who are new to technical computing on the Cell processor.

The guide outlines the Cell chip and PS3 hardware capabilities, the system software support available, and how to set up a lab-sized PS3 cluster. It also delves into programming techniques and offers some real-world examples. One of the more useful aspects of the guide is that it discusses a number of commercial and academic software platforms for the Cell architecture. Not meant to be the last word on Cell/PS3 software development, the report manages to give a balanced overview of the technologies currently available. Here's a clip from the introduction:

“As exciting as it may sound, using the PS3 for scientific computing is a bumpy ride. Parallel programming models for multi-core processors are in their infancy, and standardized APIs are not even on the horizon. As a result, presently, only hand-written code fully exploits the hardware capabilities of the CELL processor. [Editor's note: RapidMind would certainly dispute this.] Ultimately, the suitability of the PS3 platform for scientific computing is most heavily impaired by the devastating disproportion between the processing power of the processor and the crippling slowness of the interconnect, explained in detail in section 9.1. Nevertheless, the CELL processor is a revolutionary chip, delivering ground-breaking performance and now available in an affordable package. We hope that this rough guide will make the ride slightly less bumpy.”

The report contains a good discussion of the limitations of the PS3 for scientific computing including the memory bandwidth and capacity, the network interconnect speed, and shortcomings of the floating point implementation. These issues are discussed in more technical detail in a companion report: Limitations of the PlayStation 3 for High Performance Cluster Computing (http://www.netlib.org/utk/people/JackDongarra/PAPERS/ps3-summa-2007.pdf).

Some of the floating point weaknesses that limit the Cell's use in scientific computing are going to be addressed in future generations of the processor. According to the UT report, IBM is planning to pump up the double-precision performance from 14 to 102 gigaflops in the next implementation — no word if IEEE 754 floating point support issues will be addressed as well.

GPUs have similar floating point limitations. If NVIDIA and AMD want to penetrate the technical computing market with GPUs, they're going to have to make some decisions about floating point capabilities on these devices. Neither vendor offers any double precision hardware today, and IEEE 754 compliance is still a work in progress. However, NVIDIA's newest G80 device has included some support for rounding modes, overflow and NaN. (For a good discussion of floating point precision issues, read Michael Wolfe's article in this week's Feature section.)

The question here is how far will NVIDIA and AMD evolve their GPU architectures away from their graphics roots in order to support scientific floating point capabilities. The GPU engineers will also have to consider memory error correction and lower power consumption to offer a more robust HPC solution.

The market should be able to figure out how to balance this tension between application requirements and hardware capabilities. Although I've expressed my doubts about the capitalistic approach to cutting-edge supercomputing, that's not the case for commercial HPC. If GPUs and Cell processors were not applicable to industrial HPC applications, companies like PeakStream and RapidMind wouldn't exist, and researchers like Jack Dongarra would probably be working on something else. If the HPC software community figures out how to leverage the current generation of multicore hardware and starts to build a user base, the chipmakers will dance a little closer to the software.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This