Filling the Gap

By Michael Feldman

May 11, 2007

The dance between computer hardware and software has been going on for fifty years. In times past though, the relationship was kept at arm's length. The hardware engineers just cranked out the chips and threw them over the fence to the programmers. With the coming of multicore processors, the hardware/software connection has become more intimate. Chipmakers realize that multicore architectures are going to fundamentally change the software model. So if they want to move product, they have to narrow the gap between the hardware and the applications.

And this is happening. To one degree or another, Intel, IBM, AMD, NVIDIA are all partnering with ISVs and research organizations, providing early access to hardware, software support and training. The chipmakers have introduced software support, in the form of compilers and processor interface libraries, to help tool developers bring up code on their hardware. IBM offers an SDK and other tools for the Cell processor; AMD has introduced its “Close to Metal” program for GPU programming; and NVIDIA has its CUDA platform for their GPUs. Although I'm not going to talk much about multicore x86 software support in this article, Intel has a wide range of commercial products, software tools, and educational initiatives to help developers wrap their minds around multicoredness.

In high performance computing, the strategy is beginning to pay off. The most recent example of this is how rapidly development environments appeared for the relatively new IBM Cell BE and general-purpose GPU processors. The chips from the fab were barely cool before PeakStream and RapidMind delivered application development platforms for the new accelerator devices. If these products are successful, they will help create an important synergy between the chip vendors and the software developers.

Using GPUs and Cell processors as stream processing accelerators is creating a good deal of excitement in the HPC crowd. Hardly a week goes by when there's not at least one announcement of someone using these processors to speed up their application. Target workloads include 3D visualization, broadcast encoding, medical imaging, multimedia content generation, image and signal processing, financial analysis, seismic analysis, large-scale database transactions and enterprise search. This corresponds to almost any data-intensive application that requires lots of computational muscle. The broad applicability of these multicore accelerators for HPC has attracted the attention of software developers who would love to exploit this relatively cheap source of hardware.

In announcing their platform this week, RapidMind claimed support for the IBM Cell processor and the latest NVIDIA and AMD/ATI GPUs for high performance computing applications. The company says multicore x86 support is not far behind. Our feature article this week talks about how the RapidMind platform is targeting the hardware-agnostic application developer for these emerging architectures.

Academicians are also taking a hard look at the newer multicore accelerators. At the University of Tennessee (UT), Jack Dongarra and the team at the Innovative Computing Laboratory have been working with the IBM Cell processor. At their lab, a PlayStation3 (PS3) cluster of four systems is being used as a research platform for scientific computing. For the price of around $2400, they have built a system that offers 600 gigaflops (single-precision floating point) of peak performance. Although the PS3 was never designed to be a cluster node for a high performance computing system, its price and ubiquity have attracted HPC folks looking for cheap FLOPS. The UT team is evaluating programming models for the PS3 cluster and is looking at some of the limitations of the architecture for high performance computing.

In the process, the UT researchers have produced a technical report on using the PlayStation 3 as an HPC platform called “A Rough Guide to Scientific Computing On the PlayStation 3” (http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf). Less glib than an “IBM Cell Programming For Dummies” but more accessible than your average technical report, the guide should be required reading for developers who are new to technical computing on the Cell processor.

The guide outlines the Cell chip and PS3 hardware capabilities, the system software support available, and how to set up a lab-sized PS3 cluster. It also delves into programming techniques and offers some real-world examples. One of the more useful aspects of the guide is that it discusses a number of commercial and academic software platforms for the Cell architecture. Not meant to be the last word on Cell/PS3 software development, the report manages to give a balanced overview of the technologies currently available. Here's a clip from the introduction:

“As exciting as it may sound, using the PS3 for scientific computing is a bumpy ride. Parallel programming models for multi-core processors are in their infancy, and standardized APIs are not even on the horizon. As a result, presently, only hand-written code fully exploits the hardware capabilities of the CELL processor. [Editor's note: RapidMind would certainly dispute this.] Ultimately, the suitability of the PS3 platform for scientific computing is most heavily impaired by the devastating disproportion between the processing power of the processor and the crippling slowness of the interconnect, explained in detail in section 9.1. Nevertheless, the CELL processor is a revolutionary chip, delivering ground-breaking performance and now available in an affordable package. We hope that this rough guide will make the ride slightly less bumpy.”

The report contains a good discussion of the limitations of the PS3 for scientific computing including the memory bandwidth and capacity, the network interconnect speed, and shortcomings of the floating point implementation. These issues are discussed in more technical detail in a companion report: Limitations of the PlayStation 3 for High Performance Cluster Computing (http://www.netlib.org/utk/people/JackDongarra/PAPERS/ps3-summa-2007.pdf).

Some of the floating point weaknesses that limit the Cell's use in scientific computing are going to be addressed in future generations of the processor. According to the UT report, IBM is planning to pump up the double-precision performance from 14 to 102 gigaflops in the next implementation — no word if IEEE 754 floating point support issues will be addressed as well.

GPUs have similar floating point limitations. If NVIDIA and AMD want to penetrate the technical computing market with GPUs, they're going to have to make some decisions about floating point capabilities on these devices. Neither vendor offers any double precision hardware today, and IEEE 754 compliance is still a work in progress. However, NVIDIA's newest G80 device has included some support for rounding modes, overflow and NaN. (For a good discussion of floating point precision issues, read Michael Wolfe's article in this week's Feature section.)

The question here is how far will NVIDIA and AMD evolve their GPU architectures away from their graphics roots in order to support scientific floating point capabilities. The GPU engineers will also have to consider memory error correction and lower power consumption to offer a more robust HPC solution.

The market should be able to figure out how to balance this tension between application requirements and hardware capabilities. Although I've expressed my doubts about the capitalistic approach to cutting-edge supercomputing, that's not the case for commercial HPC. If GPUs and Cell processors were not applicable to industrial HPC applications, companies like PeakStream and RapidMind wouldn't exist, and researchers like Jack Dongarra would probably be working on something else. If the HPC software community figures out how to leverage the current generation of multicore hardware and starts to build a user base, the chipmakers will dance a little closer to the software.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire