RapidMind Looks to Tame the Multicore Beast

By Michael Feldman

May 11, 2007

Hot on the heels of PeakStream, RapidMind Inc. has launched its software development platform for multicore computing. On Monday the company announced RapidMind Platform v2.0, a software environment that targets GPUs from both NVIDIA and AMD/ATI as well as IBM's Cell processor. The company has also prototyped a version that will support multicore x86 processors from Intel and AMD.

Both PeakStream and RapidMind have launched platforms based on the same basic premise: HPC application developers want to be able to write hardware-agnostic code for multicore architectures. Considering the diverse range of multicore hardware that is beginning to populate HPC systems (e.g,, the Cell processors, NVIDIA/AMD GPUs, and Intel/AMD x86 chips), this seems like the right approach. The underlying proposition is that the current crop of multicore devices will rapidly evolve in both architecture and core count. With this type of volatility, software developers will be motivated to decouple their code from the hardware so that their applications can live on different types of architectures and automatically scale as new processor generations are introduced.

In talking with RapidMind's President and CEO Ray DePaul, and Chief Scientist and company co-founder Michael McCool, it's clear that their vision of delivering productivity to these multicore-based systems is to move beyond the thread model of parallelism. McCool said programmer-controlled thread management is fraught with problems. The scalability issue of mapping static application thread counts to processor cores is always a problem if application portability is a goal. Beyond that there are the inherent dangers of deadlocks and race conditions and load balancing problems when the thread workloads are asymmetric.

The RapidMind Platform uses existing C++ compilers and tools; developers just have to link in the RapidMind library to access the provided API. The library manages all the low-level parallelism and data streaming. The programming model presented to the user is independent of the number or cores or any other specific hardware attributes. The parallelism and data movement are managed in the internal layers of the software. According to McCool, this makes it impossible for developers to generate race conditions or deadlocks. He claims that the programming concepts involved can be learned within half an hour by any good software engineer.

The company has supposedly attracted over 1000 beta developers for applications that range from medical imaging to financial analysis and spam filtering. RTT USA is already using RapidMind's platform to develop commercial 3D real-time visualization applications for the automotive, aircraft and consumer-goods industries.

RapidMind's model, like PeakStream's, is geared for data-level parallelism. It's described as an SPMD (Single Program Multiple Data) stream processing model, where different cores execute the same instructions, with each core working on different data. Using the platform's API, developers define functions that are applied to data arrays. At runtime, the system software automatically distributes the data operations across the different processing elements.

The rationale for this approach has to do with the dichotomy between computation and memory performance. While it is relatively straightforward to add more cores as process technology shrinks, memory bandwidth to feed those cores is not increasing nearly as fast. McCool said the RapidMind software works very hard to optimize data movement so that memory latencies are hidden and RAM accesses are performed efficiently. The RapidMind system also includes load balancing to move work around so that all the cores are used efficiently.

“The system is highly tuned toward making sure that memory transfers overlap with computations, and that the data stays on-chip as long as possible and you get as much work done before the data goes off-chip again,” explained McCool.

Given the high level of parallelism inherent in processors like the Cell and GPUs, these architectures are particularly well-suited for this type of stream computing model. The Cell contains nine cores: a PowerPC core and eight Synergistic Processing Units (SPUs). And as long as you're not in the market for double-precision support, NVIDIA and AMD GPUS support even greater parallelism. The latest NVIDIA G80 device encompasses 128 cores. But as DePaul stated, “the challenge has always been how the developer can take advantage of these accelerator-type models.”

HPC programmers are all for removing complexity — as long as you don't remove the performance too. RapidMind presented some benchmarks to show they are delivering the expected performance when using GPUs for acceleration. Running an application based on the Black-Scholes algorithm, the company was able to show a 32x performance speedup on an NVIDIA 7900 GTX compared to the same application running on a Woodcrest Xeon workstation. They also showed a 2x performance increase for a BLAS routine SGEMM application, and 3x increase for an FFT workload. The results are not too surprising considering the single-precision floating point performance advantages of a high-end GPU versus a high-end CPU.

More impressive were the results they got when comparing a (Quaternion Julia Set) renderer application on the Cell processor. On code that was tuned by both IBM and RapidMind engineers for the same Cell platform, RapidMind outperformed the IBM's Cell SDK implementation by almost a factor of two. The renderer algorithm itself was relatively simple. The complex part, at least for the IBM developers, was targeting the code to the Cell platform.

DePaul noted this wasn't a matter of the developer not being good enough (we assume the IBM Cell programmers know how their own hardware works). He said there is so much complexity involved in making sure that the eight SPU cores, the DMA transfers and memory latency are all coordinated, that it's hard for mere humans to deal with all the interactions.

RapidMind currently supports the NVIDIA GeForce 6000, 7000 or 8000 cards, the NVIDIA Quadro card, and the ATI x1X00 family of cards. The Cell BE processor is supported on the IBM QS20/30 blade and the Sony PlayStation3 using Yellow Dog Linux. (If you've got an idle PlayStation3 lying around, you can download the RapidMind Developer Edition for free at http://www.rapidmind.net.)

Support for the Intel and AMD multicore x86 processors is in the works. A prototype of this software was able to achieve an 8x improvement in performance on a quad-core Intel Xeon versus a single-core implementation on the same platform. The interesting aspect here is that the RapidMind implementation was apparently able to double the application performance per core by exploiting parallelism that the compiler alone couldn't extract.

The company plans to use its recent $10 million funding infusion to bring the x86 multicore support capability to market and to expand the sales and marketing crew. Future plans to support other architectures will be based on customer demand.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire