Perils and Pitfalls of HPC Spotlighted at LCI Conference

By Gary Montry

May 18, 2007

The Linux Cluster Institute (LCI) Conference focus this year was on big clusters. Not necessarily on raw performance per se, but on every other factor required to acquire, host, provision, maintain and achieve scalable performance for systems as a whole.

The first two keynotes set the tone by describing the perils and pitfalls of installing huge systems and getting them to perform. Even after a few years, all of the pieces don't necessarily play together well enough to meet the original design objectives. Horst Simon began the first day with an excellent philosophical discussion about the current state of high performance computing (HPC), hardware architecture, and the political atmosphere surrounding the drive to assemble the worlds' first petaflop machines. He noted that even though we have started construction of a petaflop computer, there are presently only two general-purpose machines in the world capable of 100+ teraflops on the Linpack benchmark.

This was a perfect segue from the opening keynote Monday evening by Robert Ballance of Sandia National Laboratory (SNL) about the difficulties of assembling Red Storm and getting it to perform. Even though Sandia has years of experience building and maintaining some of the largest supercomputers in the world, Red Storm turned out to be a unique experience for them. Why? Because it was much bigger than anything they had previously built. So the old saw in computing, “if it's 10x bigger, it is something entirely new,” still holds, and we should not expect a petaflop machine to come together quietly at this moment in HPC time.

One interesting observation which Horst made in his talk is that programming a 100,000+ core machine using MPI is akin to programming each transistor individually by hand on the old Motorola 68000 processor, which of course had only 68,000 transistors. That wasn't so long ago to most of us, and his point is that we can't grow too much more in complexity unless we have some new software methodology for dealing with large systems.

The discussions generated by his comments never really addressed the fact explicitly that we are going to need new compiler technology sooner rather than later to handle the complexity. Neither MPI or OpenMP are the answers by themselves.

The rest of the talks on day one had a heavy emphasis on parallel I/O systems, and the difficulties of getting them to scale on large cluster systems. The problem here is that some of the tests can take so long (Laros, SNL) that the production system would be unavailable for unacceptably long periods of time. So I/O system administrators are forced to do simulations of the I/O systems on smaller development configurations. Presently, it seems that scalable I/O systems are limited to about one KiloClient (my term) for single-process/single-file I/O scenarios. Forget about it if you're talking about shared-file I/O. I think this is still pretty darn good progress, but the performance variability of these I/O systems is large, and it appears that their performance is very sensitive to a huge number of environmental parameters. Repeatability seems to be somewhere over the HPC horizon.

One more issue pertaining to large I/O systems: “operability” is not a synonym for “capability.”

An interesting talk by Andrew Uselton and Brian Behlendorf from Lawrence Livermore National Laboratory discussed the difficulties they had with the I/O system delivered with Blue Gene/L. They “sweated bullets” (their term, not mine) for six months trying to get the I/O system to perform up to design specs. Internally, they referred to it as “the death march.” The system, as delivered, “worked.” However, the severely oversubscribed network design left them with an initial performance deficit of 50 percent of the target of 30+ GB/sec. This seems to be akin to spending two hundred grand on a Ferrari and discovering that it won't get you to the market faster than your neighbors' Buick without considerable tuning. Not that I'm blaming IBM. This talk could have addressed systems from every other manufacturer. There was no sensible way to build the I/O system without oversubscription at that time. It just points out that these complex systems that push the state of the art do not come out of the box ready for prime time.

Hardware and Software Sessions

The second day of the conference was a sandwich of hardware and software sessions. The morning keynote by Norman Miller (UC Berkeley) discussed the usage of cluster-enabled climate modeling software to predict the impact of global warming on California's Sierra mountains snowpack. It's not a pretty picture. This work has thrust him into the state government political system. The message here is the success of the open-source WRF (Weather Research & Forecasting) project. Norman and his colleague Jin have added unique capabilities to the WRF code in order to do these simulations and will deliver these improvements to the WRF project for use by other climate researchers.

A short session on DARPA's HPCS program featured presentations from IBM on their PERCS project and from Cray on the Cascade offering. Both presentations were light on technical details, as might be expected. The important fact to take away from this program was highlighted by the IBM speaker (Rama Govindaraju). He pointed out that the last factor of 10x in performance took IBM five years, but the PERCS project has a target of 100x performance gain over the next five years.

The evening session was the HPC body-building session, where descriptions of several new big machines were paraded before us and muscles were flexed. The parade included Roadrunner (LANL), Abe (NCSA), Ranger (TACC), Jaguar (ORNL), and the Red Storm upgrade (SNL). The price prize went to Ranger, a Sun-built system which is designed to be 529 teraflops with an acquisition cost of $30 million. That works out to slightly less than six cents per megaflop! This is more than a factor of two lower than the typical price range for large clusters.

Finally, Brent Gorda, (LLNL) announced the “Cluster Challenge” for Supercomputing '07 in November. The idea here is for undergrads to build a cluster which can use one 30 amp circuit and run some applications to get a feel for the difficulty of provisioning clusters. Brent came up with the idea after realizing that outside of the laboratories and HPC-centric universities there is not much knowledge and experience in how to obtain and provision clusters. Deadlines for application are approaching, so if you are interested in fielding a team for the challenge contact Gorda at [email protected].

Cray's Peter Ungaro Kicks Off Last Day of Conference

The morning began with the keynote presentation from Peter Ungaro, titled “From Beowulf to Cray-o-wulf — Extending the Linux Clustering Paradigm to Supercomputing Scale.” In this presentation, Peter unveiled Cray's view of cluster computing and how they are going to compete in the HPC marketplace with future generations of clusters containing ten thousand to one million cores. He predicted a one million core system within five years. For comparison, today's entire Top 500 list represents less than one million cores!

His argument was that commodity Linux clusters are too generalized to provide reliability, availability and scalability when scaled past about one thousand sockets. One example: a typical cluster rack has anywhere from 200 to 300 fans. A “mean-time-to-failure” (MTBF) analysis of the cooling fans in a system with ten racks results in an average fan failure rate of one every 26 hours. On the XT4 system, Cray has reduced the fan count to one per rack — a very big fan!

This complexity reduction also applies to software. A lightweight OS-provisioned system outscales a Linux-based cluster with as few as sixty four processors (Ron Brightwell, SNL). Cray expects that future superclusters (my term) will require custom value-added simplifications in order to successfully scale, and vendors will need to provide this to the HPC marketplace. Clearly, the message coming from all of the speakers is that the system complexity of the largest supercomputers has become the driving factor in the delivery of product to the HPC user community.

Unfortunately, I do not have time to report on the remaining last day of the meeting. The rest of the day will cover more vendor talks (Cray, Dell, HP, IBM, Intel) followed by some interesting discussions that focus on I/O issues.

—–

Gary Montry is an independent software consultant specializing in parallel applications development and optimization and in attached processor software. He can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This