‘Not So Fast, Supercomputers,’ Say Software Programmers

By Steve Tally, Purdue University

May 28, 2007

The fastest of the fastest computers — supercomputers used at national research centers, research universities and major corporations — will soon gain even more performance by taking advantage of multi-core computing.

Despite the promise of almost unimagined computing power, however, even computing experts wonder whether this time the hardware developers have raced too far ahead of many programmers’ ability to create software.

Faisal Saied, senior research scientist for Information Technology at Purdue, says that parallel computing has been an esoteric skill limited to people involved with high-performance supercomputing. That is changing now that desktop computers and even laptops are multi-core.

“High-performance computing experts have learned to deal with this, but they are a fraction of the programmers,” Saied says. “In the future you won’t be able to get a computer that’s not multi-core, and as multi-core chips become ubiquitous, all programmers will have to learn new tricks.”

Even in high-performance computing there are areas that aren’t yet ready for the new multi-core machines.

“In industry, much of their high-performance code is not parallel,” Saied says. “These corporations have a lot of time and money invested in their software, and they are rightly worried about having to re-engineer that code base.”

Multi-core computers have more than one processing unit, or CPU, on a computer chip, each, in essence, a separate PC. In the next few years new high-performance computers will have dozens or hundreds of PCs on a chip, offering vast improvements in computing performance over current top machines.

Multi-core computers are required if computers are going to continue to increase in computing performance as they have over previous decades. This increased performance is needed for a variety of high-tech tasks, such as climate modeling, military weapons design, drug discovery and improving manufacturing.

But multi-core computers require parallel computer programs because each PC, or core, must get its own set of instructions. Meanwhile, much of the currently available software is not written to take advantage of multi-core computing.

For all of the amazing things that computers do, they do it all one thing at a time. The instructions are delivered in single file, as if passing through a single door. Parallel processing opens more doors, but also creates challenges because of the multiple instruction threads required.

“Imagine you had four golf balls and needed to hit four targets. If you had four people each throwing a ball at the same time, they could do it faster than one person alone. That’s the advantage of multi-core computing. Multiple PCs, all on the same chip, are working on multiple tasks. The difficulty comes in breaking the task into multiple components,” Saied says.

Steve Kirsch, an engineering fellow for Raytheon Systems Co., says that multi-core computing presents both the dream of infinite computing power and the nightmare of programming.

“The real lesson here is that the hardware and software industries have to pay attention to each other,” Kirsch says. “Their futures are tied together in a way that they haven’t been in recent memory, and that will change the way both businesses will operate.”

Gordon Moore, retired chairman and CEO of Intel Corp., famously observed that the number of components on an integrated chip would double every 24 months (often stated as every 18 months), and Moore’s Law has served as both a prescient prediction and an engineering goal for the information technology industry.

But about five years ago, researchers began seeing a discrepancy between the predicted performance from circuits and the actual computing capability in high-performance computing. Although the number of transistors on the circuits continued to increase, as predicted by Moore’s Law, actual performance remained about the same because of power and heat issues. This has become known as “Moore’s Gap.”

The problem with current chips is that the transistors leak power even when they are doing nothing, and with sequential processing there are a lot of processors waiting their turn, says Tilak Agerwala, vice president of systems at IBM Research.

“Currently, transistor performance is limited by power constraints causing microprocessor clock speeds to saturate and high-performance microprocessor cores to dissipate more power than simpler alternatives,” Agerwala says. “As the performance of a single thread of computation flattens out, multi-core processing will become critical to system performance growth.”

Computation is at a point where multi-thread programming is the only way to accelerate innovation and discovery, Agerwala says.

“We will deliver the levels of computing capability required to advance the fields of science and engineering,” Agerwala says. “Future supercomputers will effectively utilize many cores per chip and perhaps a million cores per system on multi-threaded, parallelized applications.”

Agerwala notes that IBM’s Blue Gene/L, the world’s most powerful supercomputer, already exploits 131,072 processor cores all working in parallel, using two cores per chip.

Chip makers Intel, IBM, AMD and Sun have all announced that they will soon begin producing multi-core chips. In February, Intel released research details about a chip with 80 cores, a fingernail sized chip that has the same processing power that in 1996 required a supercomputer with a 2,000-square-foot footprint and using 1,000 times the electrical power.

Kirsch says despite the promise of powerful new supercomputers, multi-core computing presents a problem for companies and researchers who depend on previously written software that has been steadily improving and evolving over the past few decades. “Our legacy software is a real concern to us,” he says.

Kirsch said that parallel programming for multi-core computers may even require new computer languages.

“Today we program in sequential languages,” he says. “Do we need to express our algorithms at a higher level of abstraction? Research into these areas is critical to our success.”

Researchers at Purdue, working closely with industrial collaborators, are developing new programming models and tools that simplify the task of writing programs for a multi-core platform, says Susanne Hambrusch, professor and head of Purdue’s Computer Science Department.

“Our programming languages researchers are exploring new programming paradigms and models,” Hambrusch says. “Our course on multi-core architectures is also preparing students for future software development positions. Purdue is clearly playing a defining role in this critical technology.”

Multi-core computers are beginning to appear for consumers, and computer scientists say this commodity approach to parallel computing will benefit consumers as well as users of high-performance computing.

Suresh Jagannathan, an associate professor of computer science at Purdue, has a positive outlook on the future of parallel programming in computing.

“There’s a thin line between pessimism and opportunity,” he says. “This is a definite opportunity. There is notable work here at Purdue to develop new programming languages, abstractions and implementations to harness parallelism and bring it into the mainstream.”

Jagannathan says the transition for desktop computers will take a different path than that of high-performance computing.

“HPC systems are on the bleeding edge of technology,” he says. “But it’s not the case that we’ve hit a brick wall. There are approaches available to us. In the long run, we will harness multi-core technology, and more programs will take advantage of it. When multi-core is ubiquitous, we expect the entire software stack — from applications all the way down to operating system kernels — to take advantage of the parallelism afforded by these architectures.”

Saied says that although the difficulty of writing parallel software is currently an issue in high-performance computing, that issue will reach desktop computing soon enough.

“In five or six years, laptop computers will have the same capabilities, and face the same obstacles, as today’s supercomputers,” Saied says. “This challenge will face people who program for desktop computers, too. People who think they have nothing to do with supercomputers and parallel processing will find out that they need these skills, too.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance family on Google Compute Engine. The instances are powered by t Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial research. Can you discuss key developments in recent years? Read more…

By Steve Conway, Hyperion

The Barcelona Supercomputing Center Offers a Virtual Tour of Its MareNostrum Supercomputer

July 6, 2020

With the COVID-19 pandemic continuing to threaten the world and disrupt normal operations, facility tours remain a little difficult to operate, with many supercomputing centers having shuttered facility tours for visitor Read more…

By Oliver Peckham

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia's Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 "Accelerator Optimized" VM A2 instance fam Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

HPCwire: Let's start with HLRS and work our way up to the European scale. HLRS has stood out in the HPC world for its support of both scientific and industrial Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This