HPC Databases: The Data Ingest Challenge

By Steven Graves

June 1, 2007

While much attention, technology and consulting fees are dedicated to getting data out of database management systems (DBMSs) rapidly, with faster queries, much less interest is paid to optimizing the process of putting the data in.

This stems at least partly from the fact that most enterprise data is not loaded all at once. Instead, it is built up gradually through a company's everyday processes such as sales, shipping and manufacturing. The data is already in the database when someone needs it. But queries against this data are often intended to support tasks with exacting deadlines — hence the emphasis on optimizing query performance.

But for HPC, optimizing the process of filling up a database — also called database provisioning or “data ingest” — takes on greater importance, due to the fact that many HPC analytical tasks such as data mining and scientific research involve assembling very large databases (VLDBs) using previously collected data external to the database management system. This aggregation could require a database to ingest terabytes before queries can be performed to support a time-sensitive analytical goal, such as predicting a competitor's next move or discovering a new blockbuster drug.

The VLDB ingest process can stretch into days, which is a highly unwelcome delay for a competitive project. And the wait is exacerbated by a particular frustration of VLDB loading: as more data is added, the ingest rate slows down markedly, with the record-per-second insertion rate waning by more than half. This article explores the technological reasons for this dwindling performance, and a possible solution in the use of database technology that stores and manages records entirely in memory.

Certain techniques are available to accelerate ingest with traditional on-disk enterprise database systems. For example, when using the INSERT statement (part of the industry standard SQL database language) to load data row-by-row from a flat file into relational database tables, it can help to strip all indexes (data structures commonly used for quick access to records) from the tables, because the database system can create new indexes more quickly after the insert process is complete, than it can update indexes as records are inserted. This approach can be combined with special bulk load features of many database systems that insert multiple records simultaneously, for greater efficiency.

But a progressively dwindling ingest rate remains a problem, due to facts of enterprise database system structure. Traditional database systems are premised on storing data on permanent media. Because commonly-used hard disks operate mechanically, with spinning platters and heads that slew across the disk surface, such disks are thousands of times slower than processes working in solid state hardware, such as writing to a region of memory. In recognition of this performance burden, database systems provide a cache to hold frequently-used records in memory.

To speed data ingest, records are written to the cache. But eventually, memory buffers fill up, and the system writes the data to the file system (logical I/O). Each logical I/O requires some time interval (usually measured in microseconds). Eventually, the file system buffers also fill up, necessitating writing of the data to the hard disk (at which point logical I/O implicitly becomes physical I/O). Physical I/O is usually measured in milliseconds, therefore its performance burden is several orders of magnitude greater than logical I/O. Physical I/O may also be imposed by the DBMS, for instance to guarantee transactional integrity.

Figure 1Mounting I/O requirements — both logical and physical — impair performance more and more as a database grows larger, for several reasons. First, as database size increases, the tree indexes used to organize data grow deeper, and the average number of steps into the tree, to reach the storage location, expands. Each step imposes a logical disk I/O. Assuming cache size stays the same, then the percent of the of the database that is cached is smaller; therefore the likelihood that a logical I/O is actually physical I/O is greater.

Second, assuming that the cache size stays the same, the percent of the database that is cached is smaller. Therefore, it is likely that any logical disk I/O — not only from tree navigation, but also the abundant I/O from writing pages of data files, checkpointing, log files, and other operations — is actually physical disk I/O.

Third, not all instances of physical I/O are equal. As the database gets larger, it consumes more physical space on the disk platter, and the average time to move the head from position to position is greater. The greater the distance traversed by the head, the longer each physical I/O's time interval. Therefore each individual physical I/O can represent a greater performance burden as data ingest proceeds.

The VLDB data ingest slowdown is endemic to traditional disk-based database architecture. As it turns out, a way to avoid this problem with provisioning — and to obtain significantly faster queries as well — is to completely eliminate physical I/O and logical I/O, along with reliance on a file system and hard disk, from the database system.

Figure 2A relatively new database technology, the in-memory database system (IMDS), has been examined largely from the standpoint of extracting data. IMDSs store records entirely in memory — they never go to disk. Because an in-memory database is already in memory, a cache would be redundant. Accordingly, the DBMS cache logic is eliminated, as is all interaction with the file system and its separate cache, and with the physical media. A major consequence of this simplification is a dramatic reduction in the number of movements (copies) of the data as it makes its way from the application to the DBMS storage.

Querying is greatly accelerated via elimination of I/O, caching and related overhead. This accomplishment alone would merit consideration of in-memory database technology in high performance computing applications (for an idea of IMDS query performance, see the benchmark results presented below). But IMDS proponents have also suggested that by jettisoning both logical and physical I/O, their systems should be able to ingest very large amounts of data without experiencing the performance falloff inherent in disk-based systems.

Until recently, this advantage existed only in theory. IMDS performance remained uncharted in the terabyte-plus size range, due partly to the technology's relative newness and partly to its origins in real-time embedded systems, which did not require management of very large databases.

But as in-memory databases catch HPC system architects' attention, and roll out in VLDB systems such as stock exchanges' automated trading applications, engineers are pushing the technology beyond previously known boundaries.

McObject helped move this software category forward in late 2006 when it tested its eXtremeDB-64 in-memory database beyond the one terabyte size boundary. The benchmark took place on a 64-bit Linux-based 160-core SGI Altix 4700 server housed at the Louisiana Immersive Technology Enterprise, a supercomputing research center housed at the Research Park of the University of Louisiana at Lafayette.

Testing ingest performance was an important goal — engineers sought to nail down whether the VLDB ingest rate would remain stable, without the performance slowdown seen in on-disk databases. (No IMDS vendor had, until then, published a benchmark involving a terabyte or more of data.)

For the benchmark, engineers created a simple database structure consisting of two tables: a PERSONS table and an ORDER table. These tables represent the two sides of any generic transaction in which there are two instances of a 'person' (one for each side of the transaction) and one instance of an 'order' that represents the transaction between the two entities. To populate the database, engineers created an array of 30,000 random strings and selected random elements from the array to populate the NAME and ADDRESS columns. Unique values for PERSON_ID and ORDER_ID were generated sequentially.

Engineers then created 3 billion PERSONS records (rows) and 12.54 billion ORDERS records (rows), resulting in a database size of 1.17 terabytes, and performed queries of varying degrees of complexity against this data store.

Benchmark results illustrate IMDSs' querying speed. For a simple SELECT statement, eXtremeDB processed 87.78 million query transactions per second using its native application programming interface (API) and 28.14 million queries per second using a SQL ODBC API. In a more complex JOIN operation, a result of 11.13 million queries per second was achieved with the native API, and 4.36 million queries per second using SQL ODBC. Comparing performance between different applications in different operating environments is notoriously tricky. But to put these results in perspective, consider that the “standard currency” of such comparisons is transactions per minute. From these results, it is understandable why IMDS technology could appeal to the designer of corporate data mining or pharmaceuticals research applications seeking to rapidly sift great volumes of data.

The benchmark also documented the predicted, but until now unproven, data ingest advantage: based on the results, IMDSs appear to avoid the performance plunge imposed by on-disk databases as they grow larger. Total provisioning time for the 1.17 terabyte, 15.54 billion row eXtremeDB-64 database was just over 33 hours. The per-row insert time for the first quartile of data was 6.9 microseconds, while the rate for the last quartile was a very respectable 8.3 microseconds. Ingest performance between first and last quartile decreased by just 20 percent — much less than the precipitous performance drop-off seen in the later stages of populating an on-disk very large database.

It is important not to confuse the time required to ingest a data set, with the time needed to back up the data once it has been loaded, or to restore it after potential failure. As part of this benchmark test, engineers backed up the fully provisioned in-memory database in 4.3 hours, and restored it in 4.76 hours. So, while initial ingest took 33 hours, the database could be saved and reloaded for subsequent use in a fraction of that time. (And, once reloaded, it can be extended with new data.) Backing up and restoring the provisioned database is a simple matter of streaming the in-memory image to persistent storage; there is no need to allocate pages, assign records to pages, maintain indexes, etc., so back up and restore is largely a function of the speed of the persistent media.

Backup and restore capabilities are especially important when working with in-memory database systems because these functions are the primary means to achieve data persistence. While IMDSs offer persistence mechanisms such as transaction logging, the types of applications served by IMDSs for data analysis have data persistence needs that differ from most mainstream enterprise systems. Data mining, modeling and other analytics applications exist to process data in its transient state, rather than provide long-term storage.

Querying will likely remain the “superstar” function of in-memory databases and the most talked about performance advantage. But backup and restore are important, and complement IMDSs' highly efficient ingest capability. They ensure data is available when needed to support time-sensitive, data-intensive tasks.

—–

About the Author

Steven Graves co-founded McObject (www.mcobject.com) in 2001. As the company's president and CEO, he has helped the company attain its goal of providing embedded database technology that makes embedded systems smarter, more reliable and more cost-effective to develop and maintain. Prior to McObject, Mr. Graves was president and chairman of Centura Solutions Corporation, and vice president of Worldwide Consulting for Centura Software Corporation; he also served as president and chief operating officer of Raima Corporation. Mr. Graves is a member of the advisory board for the University of Washington's certificate program in Embedded and Real Time Systems Programming.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire