IBM Unveils Enterprise Stream Processing System

By Michael Feldman

June 22, 2007

On Tuesday at the Security Industry and Financial Market Association (SIFMA) Technology Management Conference in New York, IBM announced System S, a software framework that uses a stream processing model to support a new class of applications. The result of a $5 million initiative at IBM Research, System S is designed to perform real-time analytics using high-throughput data streams.

The company will initially aim this technology at Wall Street trading applications, but the system is generally applicable to all kinds of real-time intelligence gathering. Relevant domains include surveillance, manufacturing, inventory management, public health, and biological research, among others. At this point, the System S technology is more than a prototype, but less than a product. This week’s announcement is aimed at garnering interest from Wall Street firms that might want to partner with IBM to develop commercial applications.

The System S software is designed to run in a heterogeneous hardware environment, taking advantage of x86, Cell, Blue Gene, or even Power-based servers. Cell-based systems, in particular, appear to be a well-suited for these types of applications because of that processor’s natural abilities as a stream computing platform. Suitable platforms can range from a single CPU up to 10,000 servers. The initial version of System S is targeted to IBM BladeCenters running Red Hat or SUSE Linux. According to IBM, in larger configurations, System S is capable of processing in the neighborhood of a million messages per second, depending on the application behavior and the nature of the data streams.

The intention of the framework is to host applications that turn heterogeneous data streams into actionable intelligence. The source of such streams could be manufacturing sensors, television broadcasts, market exchange streams, phone conversations, video feeds, email traffic, and so on. Essentially, the system works by enabling different types of software processing elements (PE) or modules to be strung together to act on data streams. The system exposes the profile of each processing element to the others in the framework so they can interoperate. The software contains an “Omniscient Scheduler” that ensures the data pipelines between the PEs operate efficiently. A user hypothesis or query drives the application and specifies the kinds of data correlations to be performed.

For example, if one were searching for a certain subject matter in conversations being conducted over a secure telephone line, this would require a number of stream processing elements. The first step would be to pass the communication feed into a data decryption PE, which would produce decrypted audio. Then, using a speech recognition PE, the audio stream would be converted into text. Next, the text data would pass through a semantic analyzer PE to identify those conversations that contained content of interest. If one was processing many such conversations, the system could automatically focus on those that met the specified criteria and drop the remainder. A more complex application with additional data feeds could be accommodated by plugging in the appropriate PEs.

According to Nagui Halim, director of high performance stream computing at IBM, System S represents a significant departure from current intelligence extraction, which traditionally relies on fixed-format data that has been stored on a disk somewhere. This model can only provide a retrospective look a problem. By contrast, System S applications are able to take unstructured raw data and process it in real time. And rather than performing simple data mining or recreating a simulation of some well-defined structure or process, System S applications attempt to make correlations and generate some type of prediction. In addition, the system is supposedly capable of refining its behavior over time by learning from the successes and failures of past correlations.

“This is about what’s going to happen,” explains Halim. “The thesis is that there are many signals that foreshadow what will occur if we have a system that is smart enough to pick them up and understand them. We tend to think it’s impossible to predict what’s going to happen; and in many cases it is. But in other cases there is a lot of antecedent information in the environment that strongly indicates what’s likely to be occurring in the future.”

To Halim’s surprise, in his research he found that streaming data analytics was a much better tool than he expected for many classes of applications. He discovered that events are often very predictable if one examines the correct data. For example the occurrence of a “perfect storm” is the result of a number of more subtle conditions which build up over time that interact to produce a big event.

If successfully implemented, predictive systems certainly have a high value for a range of enterprises and government organizations. This is especially true in the financial services industry, where accurate forecasts of options and derivatives pricing can translate directly into profits. Being able to correlate market activity with the effects of qualitative data, like news events, would open up some interesting avenues for financial trading application. IBM envisions algorithmic trading engines connected to media feeds such as CNN and Al Jazeera to correlate news reports with financial market behavior. For example, an application could be set up to look for events that could precipitate an oil price spike in the next ten minutes.

An application could also be devised to search for rogue traders or money laundering activities. Traditionally this is accomplished by examining account histories and performing manual inspection of suspicious transactions. But this sort of retrospective analysis may allow the perpetrator to get way.

“Imagine if you had the ability to look at all the trading activity, just as you do today, and correlate that with other activity, like phone calls, email, and trading floor video feeds,” says Kevin Pleiter, director of global financial services sector at IBM. This, he says, could enable you to identify illegal trading patterns as they occur — or even before.

According to Pleiter, the financial industry is on an accelerating path of automating the trading process. During the past 10 years, the number of traders has been decreasing rapidly, while the number of trades is skyrocketing. This is due to the rise of algorithmic trading software and the use of advanced computing and network technologies to increase the pace of electronic transactions. By adding unstructured data into the mix, System S could accelerate this trend.

“There’s a new arms race, and that arms race is based on technology,” says Pleiter. “Whoever has the best technology is going to be the guy who wins.”

If the level of software intelligence that IBM is chasing seems like science fiction, remember that the many of the building blocks for these types of applications are based on well-known pattern recognition and data transformation algorithms. And with the advent of powerful, general-purpose high performance platforms like GPUs, the Cell processor and FPGAs, software is now able to process raw data streams in real time. The tough part is turning the qualitative data into useful information. By providing a higher level framework for real-time analytics, System S may be able to provide the type of environment where this possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This