IBM Unveils Enterprise Stream Processing System

By Michael Feldman

June 22, 2007

On Tuesday at the Security Industry and Financial Market Association (SIFMA) Technology Management Conference in New York, IBM announced System S, a software framework that uses a stream processing model to support a new class of applications. The result of a $5 million initiative at IBM Research, System S is designed to perform real-time analytics using high-throughput data streams.

The company will initially aim this technology at Wall Street trading applications, but the system is generally applicable to all kinds of real-time intelligence gathering. Relevant domains include surveillance, manufacturing, inventory management, public health, and biological research, among others. At this point, the System S technology is more than a prototype, but less than a product. This week’s announcement is aimed at garnering interest from Wall Street firms that might want to partner with IBM to develop commercial applications.

The System S software is designed to run in a heterogeneous hardware environment, taking advantage of x86, Cell, Blue Gene, or even Power-based servers. Cell-based systems, in particular, appear to be a well-suited for these types of applications because of that processor’s natural abilities as a stream computing platform. Suitable platforms can range from a single CPU up to 10,000 servers. The initial version of System S is targeted to IBM BladeCenters running Red Hat or SUSE Linux. According to IBM, in larger configurations, System S is capable of processing in the neighborhood of a million messages per second, depending on the application behavior and the nature of the data streams.

The intention of the framework is to host applications that turn heterogeneous data streams into actionable intelligence. The source of such streams could be manufacturing sensors, television broadcasts, market exchange streams, phone conversations, video feeds, email traffic, and so on. Essentially, the system works by enabling different types of software processing elements (PE) or modules to be strung together to act on data streams. The system exposes the profile of each processing element to the others in the framework so they can interoperate. The software contains an “Omniscient Scheduler” that ensures the data pipelines between the PEs operate efficiently. A user hypothesis or query drives the application and specifies the kinds of data correlations to be performed.

For example, if one were searching for a certain subject matter in conversations being conducted over a secure telephone line, this would require a number of stream processing elements. The first step would be to pass the communication feed into a data decryption PE, which would produce decrypted audio. Then, using a speech recognition PE, the audio stream would be converted into text. Next, the text data would pass through a semantic analyzer PE to identify those conversations that contained content of interest. If one was processing many such conversations, the system could automatically focus on those that met the specified criteria and drop the remainder. A more complex application with additional data feeds could be accommodated by plugging in the appropriate PEs.

According to Nagui Halim, director of high performance stream computing at IBM, System S represents a significant departure from current intelligence extraction, which traditionally relies on fixed-format data that has been stored on a disk somewhere. This model can only provide a retrospective look a problem. By contrast, System S applications are able to take unstructured raw data and process it in real time. And rather than performing simple data mining or recreating a simulation of some well-defined structure or process, System S applications attempt to make correlations and generate some type of prediction. In addition, the system is supposedly capable of refining its behavior over time by learning from the successes and failures of past correlations.

“This is about what’s going to happen,” explains Halim. “The thesis is that there are many signals that foreshadow what will occur if we have a system that is smart enough to pick them up and understand them. We tend to think it’s impossible to predict what’s going to happen; and in many cases it is. But in other cases there is a lot of antecedent information in the environment that strongly indicates what’s likely to be occurring in the future.”

To Halim’s surprise, in his research he found that streaming data analytics was a much better tool than he expected for many classes of applications. He discovered that events are often very predictable if one examines the correct data. For example the occurrence of a “perfect storm” is the result of a number of more subtle conditions which build up over time that interact to produce a big event.

If successfully implemented, predictive systems certainly have a high value for a range of enterprises and government organizations. This is especially true in the financial services industry, where accurate forecasts of options and derivatives pricing can translate directly into profits. Being able to correlate market activity with the effects of qualitative data, like news events, would open up some interesting avenues for financial trading application. IBM envisions algorithmic trading engines connected to media feeds such as CNN and Al Jazeera to correlate news reports with financial market behavior. For example, an application could be set up to look for events that could precipitate an oil price spike in the next ten minutes.

An application could also be devised to search for rogue traders or money laundering activities. Traditionally this is accomplished by examining account histories and performing manual inspection of suspicious transactions. But this sort of retrospective analysis may allow the perpetrator to get way.

“Imagine if you had the ability to look at all the trading activity, just as you do today, and correlate that with other activity, like phone calls, email, and trading floor video feeds,” says Kevin Pleiter, director of global financial services sector at IBM. This, he says, could enable you to identify illegal trading patterns as they occur — or even before.

According to Pleiter, the financial industry is on an accelerating path of automating the trading process. During the past 10 years, the number of traders has been decreasing rapidly, while the number of trades is skyrocketing. This is due to the rise of algorithmic trading software and the use of advanced computing and network technologies to increase the pace of electronic transactions. By adding unstructured data into the mix, System S could accelerate this trend.

“There’s a new arms race, and that arms race is based on technology,” says Pleiter. “Whoever has the best technology is going to be the guy who wins.”

If the level of software intelligence that IBM is chasing seems like science fiction, remember that the many of the building blocks for these types of applications are based on well-known pattern recognition and data transformation algorithms. And with the advent of powerful, general-purpose high performance platforms like GPUs, the Cell processor and FPGAs, software is now able to process raw data streams in real time. The tough part is turning the qualitative data into useful information. By providing a higher level framework for real-time analytics, System S may be able to provide the type of environment where this possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This