IBM Unveils Enterprise Stream Processing System

By Michael Feldman

June 22, 2007

On Tuesday at the Security Industry and Financial Market Association (SIFMA) Technology Management Conference in New York, IBM announced System S, a software framework that uses a stream processing model to support a new class of applications. The result of a $5 million initiative at IBM Research, System S is designed to perform real-time analytics using high-throughput data streams.

The company will initially aim this technology at Wall Street trading applications, but the system is generally applicable to all kinds of real-time intelligence gathering. Relevant domains include surveillance, manufacturing, inventory management, public health, and biological research, among others. At this point, the System S technology is more than a prototype, but less than a product. This week’s announcement is aimed at garnering interest from Wall Street firms that might want to partner with IBM to develop commercial applications.

The System S software is designed to run in a heterogeneous hardware environment, taking advantage of x86, Cell, Blue Gene, or even Power-based servers. Cell-based systems, in particular, appear to be a well-suited for these types of applications because of that processor’s natural abilities as a stream computing platform. Suitable platforms can range from a single CPU up to 10,000 servers. The initial version of System S is targeted to IBM BladeCenters running Red Hat or SUSE Linux. According to IBM, in larger configurations, System S is capable of processing in the neighborhood of a million messages per second, depending on the application behavior and the nature of the data streams.

The intention of the framework is to host applications that turn heterogeneous data streams into actionable intelligence. The source of such streams could be manufacturing sensors, television broadcasts, market exchange streams, phone conversations, video feeds, email traffic, and so on. Essentially, the system works by enabling different types of software processing elements (PE) or modules to be strung together to act on data streams. The system exposes the profile of each processing element to the others in the framework so they can interoperate. The software contains an “Omniscient Scheduler” that ensures the data pipelines between the PEs operate efficiently. A user hypothesis or query drives the application and specifies the kinds of data correlations to be performed.

For example, if one were searching for a certain subject matter in conversations being conducted over a secure telephone line, this would require a number of stream processing elements. The first step would be to pass the communication feed into a data decryption PE, which would produce decrypted audio. Then, using a speech recognition PE, the audio stream would be converted into text. Next, the text data would pass through a semantic analyzer PE to identify those conversations that contained content of interest. If one was processing many such conversations, the system could automatically focus on those that met the specified criteria and drop the remainder. A more complex application with additional data feeds could be accommodated by plugging in the appropriate PEs.

According to Nagui Halim, director of high performance stream computing at IBM, System S represents a significant departure from current intelligence extraction, which traditionally relies on fixed-format data that has been stored on a disk somewhere. This model can only provide a retrospective look a problem. By contrast, System S applications are able to take unstructured raw data and process it in real time. And rather than performing simple data mining or recreating a simulation of some well-defined structure or process, System S applications attempt to make correlations and generate some type of prediction. In addition, the system is supposedly capable of refining its behavior over time by learning from the successes and failures of past correlations.

“This is about what’s going to happen,” explains Halim. “The thesis is that there are many signals that foreshadow what will occur if we have a system that is smart enough to pick them up and understand them. We tend to think it’s impossible to predict what’s going to happen; and in many cases it is. But in other cases there is a lot of antecedent information in the environment that strongly indicates what’s likely to be occurring in the future.”

To Halim’s surprise, in his research he found that streaming data analytics was a much better tool than he expected for many classes of applications. He discovered that events are often very predictable if one examines the correct data. For example the occurrence of a “perfect storm” is the result of a number of more subtle conditions which build up over time that interact to produce a big event.

If successfully implemented, predictive systems certainly have a high value for a range of enterprises and government organizations. This is especially true in the financial services industry, where accurate forecasts of options and derivatives pricing can translate directly into profits. Being able to correlate market activity with the effects of qualitative data, like news events, would open up some interesting avenues for financial trading application. IBM envisions algorithmic trading engines connected to media feeds such as CNN and Al Jazeera to correlate news reports with financial market behavior. For example, an application could be set up to look for events that could precipitate an oil price spike in the next ten minutes.

An application could also be devised to search for rogue traders or money laundering activities. Traditionally this is accomplished by examining account histories and performing manual inspection of suspicious transactions. But this sort of retrospective analysis may allow the perpetrator to get way.

“Imagine if you had the ability to look at all the trading activity, just as you do today, and correlate that with other activity, like phone calls, email, and trading floor video feeds,” says Kevin Pleiter, director of global financial services sector at IBM. This, he says, could enable you to identify illegal trading patterns as they occur — or even before.

According to Pleiter, the financial industry is on an accelerating path of automating the trading process. During the past 10 years, the number of traders has been decreasing rapidly, while the number of trades is skyrocketing. This is due to the rise of algorithmic trading software and the use of advanced computing and network technologies to increase the pace of electronic transactions. By adding unstructured data into the mix, System S could accelerate this trend.

“There’s a new arms race, and that arms race is based on technology,” says Pleiter. “Whoever has the best technology is going to be the guy who wins.”

If the level of software intelligence that IBM is chasing seems like science fiction, remember that the many of the building blocks for these types of applications are based on well-known pattern recognition and data transformation algorithms. And with the advent of powerful, general-purpose high performance platforms like GPUs, the Cell processor and FPGAs, software is now able to process raw data streams in real time. The tough part is turning the qualitative data into useful information. By providing a higher level framework for real-time analytics, System S may be able to provide the type of environment where this possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This