NVIDIA Takes Direct Aim at High Performance Computing

By Michael Feldman

June 22, 2007

For the past year and half, NVIDIA has been putting together the product strategy for the company's high performance computing platform. On Wednesday, NVIDIA announced Tesla, a GPU product line targeted squarely at HPC customers. The new NVIDIA products are designed to act as computational accelerators for workstations and servers that host high performance technical computing applications.

Tesla represents an evolution of NVIDIA's thinking about serving HPC customers. Last year, the company entered the arena of general-purpose computing with GPUs (GPGPU) in earnest with their high-end GeForce and Quadro GPUs. For software support, they introduced their CUDA C compiler to offer relatively low-level access to the computing capabilities of their GPUs. According to NVIDIA, the CUDA tools have been downloaded by 3000 to 4000 developers since it was introduced in November 2006. For those interested in higher levels of abstraction, a GPGPU MATLAB library plug-in will soon be released.

With these early tools, technical computing users were able to demonstrate application performance increases of between 40 and 240 times compared to traditional x86 platforms. The applications ranged from neuron simulation and seismic modeling to MRI processing.

But the GeForce and Quadro products are designed mainly for visualization applications in a personal workstation or PC setup. There is no reasonable way to scale these devices across a cluster of servers to achieve a more generalized HPC solution. Nor was there a technology roadmap for NVIDIA's mainstream GPU lines that emphasized computing performance over graphics performance. Tesla now makes this possible. With the three separate GPU product lines, NVIDIA is able to target distinct application areas that reflect the company customer base. The GeForce products are geared for consumer/entertainment computing and visualization applications; the Quadro boards, for professional design and creation applications; and now the Tesla products, for traditional HPC applications.

Tesla was designed with the kind of form factors, power profiles, reliability levels and interconnect types that are compatible with high performance computing workstations and server platforms. There are three initial offerings: a 4-GPU server board, a 2-GPU workstation board, and a GPU computing processor. All the initial products will be based on the current high-end Quadro GPU, offering over 500 gigaflops of single precision performance per processor.

The Tesla S870 server board is really the big breakthrough for NVIDIA, since it represents their first product designed for the HPC datacenter. It fits in a 1U chassis, contains four GPUs, and communicates with the server host using a Gen 2 PCI Express switch. Temperature sensors and system monitoring are included to provide the level of reliability expected in datacenter hardware. The board dissipates 550 watts. Add another 10 watts for a PCI Express host adapter card. That might seem like a lot of juice for an accelerator, but for 560 watts you get over 2 teraflops of single-precision performance. MSRP for the server board is $12,000.

The Tesla server also comes in a 2-GPU version, and an 8-GPU version is in the works. The latter configuration is expected to improve upon the performance per watt ratio somewhat.

The other two initial Tesla products are targeted for workstations or PCs. The Tesla D870 is a 2-GPU board that connects to a deskside workstation. Like the server product, it connects to the host via PCI Express. The D870 uses 550 watts of power and lists for $7500. The Tesla C870 is a single 170 watt GPU processor that fits in a PCI Express slot in a workstation or PC. It lists for $1,499.

Andy Keane, general manager of GPU Computing at NVIDIA, thinks most of the company's early technical computing customers will migrate from the current GeForce and Quadro platforms to Tesla. Customers that are using the current products for both visualization and computing may stick with them if the computing side of their application doesn't outrun the GPU performance. But Tesla is clearly meant to be the future of technical computing at NVIDIA.

Although the initial offerings are based on NVIDIA's 8-series devices, as Tesla evolves it will sport its own GPU variants, which may run with faster clock speeds (but perhaps slower on-chip memory) than GPUs whose primary focus is to drive visual displays. More significantly, Keane says that double-precision floating point capability will be added to the entire Tesla product line by the end of 2007.

The addition of double-precision capability will open up the entire technical computing market for NVIDIA, since the inherent limitations of single precision arithmetic will be removed. So unless AMD comes out with a double precision GPU in the next few months, NVIDIA will be the vendor to pioneer 64-bit floating point in GPGPU computing. As such, it becomes a more direct competitor with ClearSpeed boards, a math co-processor offering that also targets the HPC market. Although NVIDIA has not released power or performance specs for their upcoming double-precision devices, one can surmise that ClearSpeed will be able to claim a performance per watt advantage, but perhaps not a performance per dollar advantage. Depending on how Intel's Larrabee processor development plays out, NVIDIA could eventually run into additional competition there as well.

In any case, there may be plenty of acceleration opportunities to go around. The commercial HPC market is growing rapidly — even faster than the general IT market. According to IDC, technical computing revenues will reach $14.2 billion by 2010. Currently, the oil & gas and financial services segments represent two of the highest growth areas right now. But manufacturing, biotech and government HPC are also expanding. NVIDIA thinks its new HPC line can ride a lot of this growth as users start to figure out that Tesla-equipped workstations can replace decent sized clusters and Tesla-equipped clusters can match the raw performance in some high-end supercomputers.

“Now when we go into an IT department and they ask us how to put GPUs into their datacenter, we have a specific answer and a product that exactly fits what they expect to buy,” says Keane.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This