Getting Data Centers to Chill

By Tim McCann

June 29, 2007

As increasingly dense systems drive up computer room temperatures, new cooling solutions are letting water take the heat.

The latest dense rack systems are hot — and in more ways than one.

High-density racks are growing popular because organizations need more compute performance to run today’s HPC applications. But for many institutions, labs and corporations, the “server sprawl” that resulted from years of cluster scale-outs can’t continue. Simply put, computer rooms are running out of room.

So IT directors are turning to faster, multi-core processors and ultra-dense board designs to consolidate sprawling server farms into tall racks stacked with dense servers and even denser blades. As compute requirements increase, more of these racks find their way into the data center. As a result, heat very quickly becomes a major worry for system administrators.

While this is less of a concern for brand-new data centers with ventilation and cooling systems specially designed to accommodate faster, hotter deployments, most facilities aren’t new. They are packed with legacy systems, each with its own particular thermal management baggage.

The Trouble with Heat

Excessive heat can introduce a constellation of problems. Within the data center, IT administrators usually arrange computer systems by trying to alternate “hot” and “cold” aisles — in other words, they try to distribute exhaust (hot) and intake (cold) aisles throughout the room to avoid hot spots that can push ambient temperatures beyond acceptable limits. Indeed, a growing problem with high, hot racks is the tendency for some systems to emit so much heated exhaust that the computer room’s ventilation system simply cannot remove it all. Too often, some of that hot air bleeds into the cold aisle, recirculating back into the system and making the rack run hotter than needed.

That phenomenon brings with it significant costs:

  • Impact on hardware. Exposure to temperatures that exceed prescribed tolerances can cause system failures and ultimately cut short the lifespan of components. It’s easy to imagine how. Consider that dense 30 Kilowatt (kW) racks are growing more popular in today’s data center. A rack pulling that much energy will roughly put out the same amount of heat as 300 100-watt light bulbs. Without an effective cooling system, that rack can reach unsafe temperatures in minutes.
  • Impact on energy costs. As computer rooms grow hotter, they cost more to power and cool. The Green Grid, a non-profit consortium dedicated to advancing energy efficiency in data centers (www.thegreengrid.org), has established a metric by which organizations can estimate the total impact of a system’s power demands — including the cost of cooling the system. The Green Grid’s Power Usage Effectiveness (PUE) metric is essentially a ratio that that provides a helpful multiplier for understanding the “fully loaded” energy cost of a system. For instance, if a new rack of multi-core blades draws 30kW and the PUE for the data center is 3.0, then the rack’s overall power consumption is 90kW. Initial studies suggest that a PUE of 2.0 appears relatively average, with some facilities reporting PUE ratios as low as 1.3 and others more than 3.0. (The closer the PUE value is to 1.0, the better.) Even as blade and server designs themselves grow more energy-efficient, commensurate increases in density still create cooling challenges that can lead to higher PUE ratios.

Because both system density and processor speeds are increasing — suggesting that heat dissipation will remain a challenge for years to come — vendors and end users alike have pursued a variety of approaches to cooling. Gaining popularity on all fronts is the use of water to carry heat away from systems and the data center at large.

Water: The Coolant of Choice

As many HPC veterans know, liquid cooling isn’t new. It has long been used in large, custom implementations, dating back to 1964 when IBM launched its first water-cooled computing system. For most modern implementations, water remains the coolant of choice.

Water cooling typically works rather like an automobile’s radiator, only in reverse. In a car, a water/glycol mixture circulating through the radiator is cooled by the incoming airflow caused by the car’s forward motion. In a computing system, fans blow heat at a water coil, which takes up the heat and either carries it away or cools it before the air reaches the data center’s ambient environment. Some solutions send heated water to a central chilling station which safely dissipates the heat and pumps chilled water back to the coils in the rack systems. Plumbing runs beneath the data center floor, sharing the airflow space with cabling.

Several types of water cooling implementations are available from the major system vendors, and even from companies who specialize in providing add-on cooling solutions. All of them operate on the same fundamental approach to thermal exchange, even if their particular approach differs.

Closed-loop rack airflow.
Available from a variety of companies, including HP, these solutions use water-chilled coils mounted inside the rack to remove the heat gained after air passes through the system’s electronics. These solutions then recirculate the cooled air back into the rack. Some closed-loop systems are installed alongside a rack, and are called “sidecar” systems. One third-party option, from Knurr CoolTherm, features coils mounted below the rack’s configurable space.

Open-loop rack airflow.
The choice of HPC solution providers such as SGI and IBM, this approach also uses fan-blown air to cool the system’s electronics. The air then is cooled through water-chilled coils, and the cooled air is exhausted at the rear of the rack. These solutions aim to keep exhausted air just slightly warmer than the ambient data center environment, thus minimizing the chance for hot spots. Open-loop solutions are available in a variety of form factors to accommodate multiple data center architectures.

Water-Chilled Doors: Convenient and Effective

Water-chilled coil solutions, whether open- or closed-loop implementations, are evolving rapidly. As more HPC users deploy these options for thermal management, vendors are finding ways to make the solutions more efficient and — importantly — more convenient.

One of the most significant advances is the water-chilled door. With the first server OEM implementation pioneered by SGI in 2004, this approach contains the water cooling mechanism entirely within a hinged rear door, which can be opened at any time to enable easy access to air-movers and cables, and the water-chilled door itself. Designs like these can dramatically reduce the time required to deploy the rack, not to mention the effort needed to maintain and service it.

This approach has been proven successful since its introduction. SGI alone has fielded hundreds of HPC rack installations featuring water-chilled doors. One such installation is NASA’s historic Columbia supercomputer, which is powered by 10,240 processor cores packed into 20 nodes. One of the most powerful supercomputers on the planet, Columbia has delivered 142 million hours of productive use since it was installed in October 2004. Its highest density nodes are water-cooled.

Water-chilled doors are not only convenient, they’re effective. For example, SGI’s third-generation water-chilled doors have been shown to remove 95 percent of the heat generated by the rack system. In real terms, this means the heat expelled by a 30 kW rack would be reduced to the heat of a 1.5 kW system. Revisiting our 100-watt light bulb analogy, that’s reducing the heat from 300 bulbs to just 15.

More of the Same, Only Better

Today’s water-cooled thermal management solutions are designed to solve the thermal challenges posed by systems based on air-cooled, industry-standard components. As it happens, these are the very systems that are driving the majority of the growth in the HPC sector, and their popularity will in turn prompt continued refinements in cooling solutions. Because, as we’ve established, the future is all about density.

Meanwhile, some companies are looking at more specialized approaches to bring liquid cooling further into the rack. Current techniques range dramatically. Some systems spray coolants directly onto heat-generating components such as CPUs. Others use liquid metal to conduct heat away from heat sources. They’re all after the same thing as water cooling: to minimize the problems and commensurate costs associated with excess heat.

While one or more of these sophisticated approaches may someday see broader adoption in HPC environments, the vast majority of today’s systems still must meet the aggressive price/performance targets that allow end users to acquire and deploy the resources they need, when they need them.

So it appears that, for the foreseeable future at least, we’ll be letting water take the heat.

—–

Tim McCann is chief engineer at SGI, and one of the lead architects of SGI’s water-chilled doors. At the International Supercomputing Conference in Dresden, Germany, he participated in a Birds of a Feather session on energy consumption of HPC systems. For more information, visit http://www.supercomp.de/isc2007/index.php5?s=conference&s_nav=bofs.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This